Loading…
On quantum states for angular position and angular momentum of light
In the present paper we construct a properly defined quantum state ψ ( θ ) expressed in terms of elliptic Jacobi theta functions for the self-adjoint observables angular position θ and the corresponding angular momentum operator L = − i d / d θ in units of ℏ = 1 . The quantum uncertainties Δ θ and Δ...
Saved in:
Published in: | Journal of optics (2010) 2024-09, Vol.26 (9), p.95201 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c163t-bef9820beb22bd19df912e3ed049a14833608814b80a61da105096e937dc182b3 |
container_end_page | |
container_issue | 9 |
container_start_page | 95201 |
container_title | Journal of optics (2010) |
container_volume | 26 |
creator | Skagerstam, Bo-Sture K Rekdal, Per K |
description | In the present paper we construct a properly defined quantum state ψ ( θ ) expressed in terms of elliptic Jacobi theta functions for the self-adjoint observables angular position θ and the corresponding angular momentum operator L = − i d / d θ in units of ℏ = 1 . The quantum uncertainties Δ θ and Δ L for the state are well-defined and are shown to give a lower value of the uncertainty product Δ θ Δ L in contrast to the so called minimal uncertainty states as discussed in Franke-Arnold et al (2004 New J. Phys. 6 103-1-8). The mean value ⟨ L ⟩ of the state ψ ( θ ) is not required to be an integer. In the case of any half-integer mean value ⟨ L ⟩ the state constructed exhibits a remarkable critical behavior with upper and lower bounds Δ θ = π 2 / 3 − 2 and Δ L = 1 / 2 . |
doi_str_mv | 10.1088/2040-8986/ad5f9c |
format | article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2040_8986_ad5f9c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>joptad5f9c</sourcerecordid><originalsourceid>FETCH-LOGICAL-c163t-bef9820beb22bd19df912e3ed049a14833608814b80a61da105096e937dc182b3</originalsourceid><addsrcrecordid>eNp1kD9PwzAQxS0EElXpzugPQKjPTlJ7ROWvVKkLzJYd2yVVEgfbGfj2JARl45Y7_XTvdO8hdAvkHgjnW0pyknHBy60yhRPVBVot6HKZd_wabWI8k7EY5JQVK_R47PDXoLo0tDgmlWzEzgesutPQqIB7H-tU-24EZoGtb-2vwDvc1KfPdIOunGqi3fz1Nfp4fnrfv2aH48vb_uGQVVCylGnrBKdEW02pNiCME0Ats4bkQkHOGStHM5BrTlQJRgEpiCitYDtTAaearRGZ71bBxxisk32oWxW-JRA5BSEnp3JyLecgRsndLKl9L89-CN344P_rPw7LX0Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On quantum states for angular position and angular momentum of light</title><source>Institute of Physics</source><creator>Skagerstam, Bo-Sture K ; Rekdal, Per K</creator><creatorcontrib>Skagerstam, Bo-Sture K ; Rekdal, Per K</creatorcontrib><description>In the present paper we construct a properly defined quantum state ψ ( θ ) expressed in terms of elliptic Jacobi theta functions for the self-adjoint observables angular position θ and the corresponding angular momentum operator L = − i d / d θ in units of ℏ = 1 . The quantum uncertainties Δ θ and Δ L for the state are well-defined and are shown to give a lower value of the uncertainty product Δ θ Δ L in contrast to the so called minimal uncertainty states as discussed in Franke-Arnold et al (2004 New J. Phys. 6 103-1-8). The mean value ⟨ L ⟩ of the state ψ ( θ ) is not required to be an integer. In the case of any half-integer mean value ⟨ L ⟩ the state constructed exhibits a remarkable critical behavior with upper and lower bounds Δ θ = π 2 / 3 − 2 and Δ L = 1 / 2 .</description><identifier>ISSN: 2040-8978</identifier><identifier>EISSN: 2040-8986</identifier><identifier>DOI: 10.1088/2040-8986/ad5f9c</identifier><identifier>CODEN: JOOPCA</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>angular position and angular momentum ; branching ; half-integer mean value angular momentum ; minimal uncertainty ; quantum states</subject><ispartof>Journal of optics (2010), 2024-09, Vol.26 (9), p.95201</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c163t-bef9820beb22bd19df912e3ed049a14833608814b80a61da105096e937dc182b3</cites><orcidid>0009-0008-7035-3502 ; 0000-0001-8124-1540</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Skagerstam, Bo-Sture K</creatorcontrib><creatorcontrib>Rekdal, Per K</creatorcontrib><title>On quantum states for angular position and angular momentum of light</title><title>Journal of optics (2010)</title><addtitle>JOpt</addtitle><addtitle>J. Opt</addtitle><description>In the present paper we construct a properly defined quantum state ψ ( θ ) expressed in terms of elliptic Jacobi theta functions for the self-adjoint observables angular position θ and the corresponding angular momentum operator L = − i d / d θ in units of ℏ = 1 . The quantum uncertainties Δ θ and Δ L for the state are well-defined and are shown to give a lower value of the uncertainty product Δ θ Δ L in contrast to the so called minimal uncertainty states as discussed in Franke-Arnold et al (2004 New J. Phys. 6 103-1-8). The mean value ⟨ L ⟩ of the state ψ ( θ ) is not required to be an integer. In the case of any half-integer mean value ⟨ L ⟩ the state constructed exhibits a remarkable critical behavior with upper and lower bounds Δ θ = π 2 / 3 − 2 and Δ L = 1 / 2 .</description><subject>angular position and angular momentum</subject><subject>branching</subject><subject>half-integer mean value angular momentum</subject><subject>minimal uncertainty</subject><subject>quantum states</subject><issn>2040-8978</issn><issn>2040-8986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kD9PwzAQxS0EElXpzugPQKjPTlJ7ROWvVKkLzJYd2yVVEgfbGfj2JARl45Y7_XTvdO8hdAvkHgjnW0pyknHBy60yhRPVBVot6HKZd_wabWI8k7EY5JQVK_R47PDXoLo0tDgmlWzEzgesutPQqIB7H-tU-24EZoGtb-2vwDvc1KfPdIOunGqi3fz1Nfp4fnrfv2aH48vb_uGQVVCylGnrBKdEW02pNiCME0Ats4bkQkHOGStHM5BrTlQJRgEpiCitYDtTAaearRGZ71bBxxisk32oWxW-JRA5BSEnp3JyLecgRsndLKl9L89-CN344P_rPw7LX0Y</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Skagerstam, Bo-Sture K</creator><creator>Rekdal, Per K</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0008-7035-3502</orcidid><orcidid>https://orcid.org/0000-0001-8124-1540</orcidid></search><sort><creationdate>20240901</creationdate><title>On quantum states for angular position and angular momentum of light</title><author>Skagerstam, Bo-Sture K ; Rekdal, Per K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c163t-bef9820beb22bd19df912e3ed049a14833608814b80a61da105096e937dc182b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>angular position and angular momentum</topic><topic>branching</topic><topic>half-integer mean value angular momentum</topic><topic>minimal uncertainty</topic><topic>quantum states</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skagerstam, Bo-Sture K</creatorcontrib><creatorcontrib>Rekdal, Per K</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Journal of optics (2010)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skagerstam, Bo-Sture K</au><au>Rekdal, Per K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On quantum states for angular position and angular momentum of light</atitle><jtitle>Journal of optics (2010)</jtitle><stitle>JOpt</stitle><addtitle>J. Opt</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>26</volume><issue>9</issue><spage>95201</spage><pages>95201-</pages><issn>2040-8978</issn><eissn>2040-8986</eissn><coden>JOOPCA</coden><abstract>In the present paper we construct a properly defined quantum state ψ ( θ ) expressed in terms of elliptic Jacobi theta functions for the self-adjoint observables angular position θ and the corresponding angular momentum operator L = − i d / d θ in units of ℏ = 1 . The quantum uncertainties Δ θ and Δ L for the state are well-defined and are shown to give a lower value of the uncertainty product Δ θ Δ L in contrast to the so called minimal uncertainty states as discussed in Franke-Arnold et al (2004 New J. Phys. 6 103-1-8). The mean value ⟨ L ⟩ of the state ψ ( θ ) is not required to be an integer. In the case of any half-integer mean value ⟨ L ⟩ the state constructed exhibits a remarkable critical behavior with upper and lower bounds Δ θ = π 2 / 3 − 2 and Δ L = 1 / 2 .</abstract><pub>IOP Publishing</pub><doi>10.1088/2040-8986/ad5f9c</doi><tpages>6</tpages><orcidid>https://orcid.org/0009-0008-7035-3502</orcidid><orcidid>https://orcid.org/0000-0001-8124-1540</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-8978 |
ispartof | Journal of optics (2010), 2024-09, Vol.26 (9), p.95201 |
issn | 2040-8978 2040-8986 |
language | eng |
recordid | cdi_crossref_primary_10_1088_2040_8986_ad5f9c |
source | Institute of Physics |
subjects | angular position and angular momentum branching half-integer mean value angular momentum minimal uncertainty quantum states |
title | On quantum states for angular position and angular momentum of light |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A32%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20quantum%20states%20for%20angular%20position%20and%20angular%20momentum%20of%20light&rft.jtitle=Journal%20of%20optics%20(2010)&rft.au=Skagerstam,%20Bo-Sture%20K&rft.date=2024-09-01&rft.volume=26&rft.issue=9&rft.spage=95201&rft.pages=95201-&rft.issn=2040-8978&rft.eissn=2040-8986&rft.coden=JOOPCA&rft_id=info:doi/10.1088/2040-8986/ad5f9c&rft_dat=%3Ciop_cross%3Ejoptad5f9c%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c163t-bef9820beb22bd19df912e3ed049a14833608814b80a61da105096e937dc182b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |