Loading…
Noise robustness of interferometric surface topography evaluation methods. Correlogram correlation
Different surface height estimation methods are differently affected by interferometric noise. From a theoretical analysis we obtain height variance estimators for the methods. The estimations allow us to rigorously compare the noise robustness of popular evaluation algorithms. The envelope methods...
Saved in:
Published in: | Surface topography metrology and properties 2017-12, Vol.5 (4), p.45008 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Different surface height estimation methods are differently affected by interferometric noise. From a theoretical analysis we obtain height variance estimators for the methods. The estimations allow us to rigorously compare the noise robustness of popular evaluation algorithms. The envelope methods have the highest variances and hence the lowest noise resistances. The noise robustness improves from the envelope to the phase methods, but a technique involving the correlation of correlograms is superior even to the latter. We dwell on some details of this correlogram correlation method and the range of its application. |
---|---|
ISSN: | 2051-672X 2051-672X |
DOI: | 10.1088/2051-672X/aa9459 |