Loading…

Strain-dependent exciton diffusion in transition metal dichalcogenides

Monolayers of transition metal dichalcogenides have a remarkable excitonic landscape with deeply bound bright and dark exciton states. Their properties are strongly affected by lattice distortions that can be created in a controlled way via strain. Here, we perform a joint theory-experiment study in...

Full description

Saved in:
Bibliographic Details
Published in:2d materials 2021-01, Vol.8 (1), p.15030
Main Authors: Rosati, Roberto, Brem, Samuel, Perea-Causín, Raül, Schmidt, Robert, Niehues, Iris, Michaelis de Vasconcellos, Steffen, Bratschitsch, Rudolf, Malic, Ermin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c429t-874563a3ef2b52c3c735f07f142c364ed27e09642e11c732811e810afc0124583
cites cdi_FETCH-LOGICAL-c429t-874563a3ef2b52c3c735f07f142c364ed27e09642e11c732811e810afc0124583
container_end_page
container_issue 1
container_start_page 15030
container_title 2d materials
container_volume 8
creator Rosati, Roberto
Brem, Samuel
Perea-Causín, Raül
Schmidt, Robert
Niehues, Iris
Michaelis de Vasconcellos, Steffen
Bratschitsch, Rudolf
Malic, Ermin
description Monolayers of transition metal dichalcogenides have a remarkable excitonic landscape with deeply bound bright and dark exciton states. Their properties are strongly affected by lattice distortions that can be created in a controlled way via strain. Here, we perform a joint theory-experiment study investigating exciton diffusion in strained tungsten disulfide (WS2) monolayers. We reveal a non-trivial and non-monotonic influence of strain. Lattice deformations give rise to different energy shifts for bright and dark excitons changing the excitonic landscape, the efficiency of intervalley scattering channels and the weight of single exciton species to the overall exciton diffusion. We predict a minimal diffusion coefficient in unstrained WS2 followed by a steep speed-up by a factor of 3 for tensile biaxial strain at about 0.6% strain-in excellent agreement with our experiments. The obtained microscopic insights on the impact of strain on exciton diffusion are applicable to a broad class of multi-valley 2D materials.
doi_str_mv 10.1088/2053-1583/abbd51
format article
fullrecord <record><control><sourceid>swepub_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2053_1583_abbd51</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_research_chalmers_se_a487c19d_bd99_4d51_a9fa_e71c7f36e8ee</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-874563a3ef2b52c3c735f07f142c364ed27e09642e11c732811e810afc0124583</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhisEEtPYneNOnCiLm7RNj2higDSJw-BspYnDMq0fSjoB_55UQxMHxMl2_PqN_STJNbA7YFIuMpbzFHLJF6quTQ5nyeT0dP4rv0xmIewYY1AWXEAxSVabwSvXpoZ6ag21w5w-tRu6dm6ctYfgYubaeRS1wQ1j1dCg9rGrt2qvu3dqnaFwlVxYtQ80-4nT5G318Lp8Stcvj8_L-3WqRVYNqSxFXnDFyWZ1nmmuS55bVloQsSgEmawkVhUiI4DYyyQASWDKagaZiAdMk83RN3xQf6ix965R_gs75dBTIOX1FsfNGvIBA6ESstRQGaxNVaGIbFBVViGV8QPLC5JE0ZUdXbXvQvBkT77AcASMI0EcCeIRcBy5PY64rsddd_BtPPs_-c0f8sE0KBGQQc44w95Y_g3dfoon</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Strain-dependent exciton diffusion in transition metal dichalcogenides</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Rosati, Roberto ; Brem, Samuel ; Perea-Causín, Raül ; Schmidt, Robert ; Niehues, Iris ; Michaelis de Vasconcellos, Steffen ; Bratschitsch, Rudolf ; Malic, Ermin</creator><creatorcontrib>Rosati, Roberto ; Brem, Samuel ; Perea-Causín, Raül ; Schmidt, Robert ; Niehues, Iris ; Michaelis de Vasconcellos, Steffen ; Bratschitsch, Rudolf ; Malic, Ermin</creatorcontrib><description>Monolayers of transition metal dichalcogenides have a remarkable excitonic landscape with deeply bound bright and dark exciton states. Their properties are strongly affected by lattice distortions that can be created in a controlled way via strain. Here, we perform a joint theory-experiment study investigating exciton diffusion in strained tungsten disulfide (WS2) monolayers. We reveal a non-trivial and non-monotonic influence of strain. Lattice deformations give rise to different energy shifts for bright and dark excitons changing the excitonic landscape, the efficiency of intervalley scattering channels and the weight of single exciton species to the overall exciton diffusion. We predict a minimal diffusion coefficient in unstrained WS2 followed by a steep speed-up by a factor of 3 for tensile biaxial strain at about 0.6% strain-in excellent agreement with our experiments. The obtained microscopic insights on the impact of strain on exciton diffusion are applicable to a broad class of multi-valley 2D materials.</description><identifier>ISSN: 2053-1583</identifier><identifier>EISSN: 2053-1583</identifier><identifier>DOI: 10.1088/2053-1583/abbd51</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>dark excitons ; exciton diffusion ; strain</subject><ispartof>2d materials, 2021-01, Vol.8 (1), p.15030</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-874563a3ef2b52c3c735f07f142c364ed27e09642e11c732811e810afc0124583</citedby><cites>FETCH-LOGICAL-c429t-874563a3ef2b52c3c735f07f142c364ed27e09642e11c732811e810afc0124583</cites><orcidid>0000-0002-2229-0147 ; 0000-0001-7438-2679 ; 0000-0002-2368-2548 ; 0000-0002-2514-3425 ; 0000-0002-8856-3347 ; 0000-0001-8823-1302 ; 0000-0003-3584-0635</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27911,27912</link.rule.ids><backlink>$$Uhttps://research.chalmers.se/publication/520943$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Rosati, Roberto</creatorcontrib><creatorcontrib>Brem, Samuel</creatorcontrib><creatorcontrib>Perea-Causín, Raül</creatorcontrib><creatorcontrib>Schmidt, Robert</creatorcontrib><creatorcontrib>Niehues, Iris</creatorcontrib><creatorcontrib>Michaelis de Vasconcellos, Steffen</creatorcontrib><creatorcontrib>Bratschitsch, Rudolf</creatorcontrib><creatorcontrib>Malic, Ermin</creatorcontrib><title>Strain-dependent exciton diffusion in transition metal dichalcogenides</title><title>2d materials</title><addtitle>TDM</addtitle><addtitle>2D Mater</addtitle><description>Monolayers of transition metal dichalcogenides have a remarkable excitonic landscape with deeply bound bright and dark exciton states. Their properties are strongly affected by lattice distortions that can be created in a controlled way via strain. Here, we perform a joint theory-experiment study investigating exciton diffusion in strained tungsten disulfide (WS2) monolayers. We reveal a non-trivial and non-monotonic influence of strain. Lattice deformations give rise to different energy shifts for bright and dark excitons changing the excitonic landscape, the efficiency of intervalley scattering channels and the weight of single exciton species to the overall exciton diffusion. We predict a minimal diffusion coefficient in unstrained WS2 followed by a steep speed-up by a factor of 3 for tensile biaxial strain at about 0.6% strain-in excellent agreement with our experiments. The obtained microscopic insights on the impact of strain on exciton diffusion are applicable to a broad class of multi-valley 2D materials.</description><subject>dark excitons</subject><subject>exciton diffusion</subject><subject>strain</subject><issn>2053-1583</issn><issn>2053-1583</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhisEEtPYneNOnCiLm7RNj2higDSJw-BspYnDMq0fSjoB_55UQxMHxMl2_PqN_STJNbA7YFIuMpbzFHLJF6quTQ5nyeT0dP4rv0xmIewYY1AWXEAxSVabwSvXpoZ6ag21w5w-tRu6dm6ctYfgYubaeRS1wQ1j1dCg9rGrt2qvu3dqnaFwlVxYtQ80-4nT5G318Lp8Stcvj8_L-3WqRVYNqSxFXnDFyWZ1nmmuS55bVloQsSgEmawkVhUiI4DYyyQASWDKagaZiAdMk83RN3xQf6ix965R_gs75dBTIOX1FsfNGvIBA6ESstRQGaxNVaGIbFBVViGV8QPLC5JE0ZUdXbXvQvBkT77AcASMI0EcCeIRcBy5PY64rsddd_BtPPs_-c0f8sE0KBGQQc44w95Y_g3dfoon</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Rosati, Roberto</creator><creator>Brem, Samuel</creator><creator>Perea-Causín, Raül</creator><creator>Schmidt, Robert</creator><creator>Niehues, Iris</creator><creator>Michaelis de Vasconcellos, Steffen</creator><creator>Bratschitsch, Rudolf</creator><creator>Malic, Ermin</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABBSD</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>F1S</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-2229-0147</orcidid><orcidid>https://orcid.org/0000-0001-7438-2679</orcidid><orcidid>https://orcid.org/0000-0002-2368-2548</orcidid><orcidid>https://orcid.org/0000-0002-2514-3425</orcidid><orcidid>https://orcid.org/0000-0002-8856-3347</orcidid><orcidid>https://orcid.org/0000-0001-8823-1302</orcidid><orcidid>https://orcid.org/0000-0003-3584-0635</orcidid></search><sort><creationdate>20210101</creationdate><title>Strain-dependent exciton diffusion in transition metal dichalcogenides</title><author>Rosati, Roberto ; Brem, Samuel ; Perea-Causín, Raül ; Schmidt, Robert ; Niehues, Iris ; Michaelis de Vasconcellos, Steffen ; Bratschitsch, Rudolf ; Malic, Ermin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-874563a3ef2b52c3c735f07f142c364ed27e09642e11c732811e810afc0124583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>dark excitons</topic><topic>exciton diffusion</topic><topic>strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosati, Roberto</creatorcontrib><creatorcontrib>Brem, Samuel</creatorcontrib><creatorcontrib>Perea-Causín, Raül</creatorcontrib><creatorcontrib>Schmidt, Robert</creatorcontrib><creatorcontrib>Niehues, Iris</creatorcontrib><creatorcontrib>Michaelis de Vasconcellos, Steffen</creatorcontrib><creatorcontrib>Bratschitsch, Rudolf</creatorcontrib><creatorcontrib>Malic, Ermin</creatorcontrib><collection>Institute of Physics - IOP eJournals - Open Access</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>SWEPUB Chalmers tekniska högskola full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Chalmers tekniska högskola</collection><collection>SwePub Articles full text</collection><jtitle>2d materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosati, Roberto</au><au>Brem, Samuel</au><au>Perea-Causín, Raül</au><au>Schmidt, Robert</au><au>Niehues, Iris</au><au>Michaelis de Vasconcellos, Steffen</au><au>Bratschitsch, Rudolf</au><au>Malic, Ermin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain-dependent exciton diffusion in transition metal dichalcogenides</atitle><jtitle>2d materials</jtitle><stitle>TDM</stitle><addtitle>2D Mater</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>8</volume><issue>1</issue><spage>15030</spage><pages>15030-</pages><issn>2053-1583</issn><eissn>2053-1583</eissn><abstract>Monolayers of transition metal dichalcogenides have a remarkable excitonic landscape with deeply bound bright and dark exciton states. Their properties are strongly affected by lattice distortions that can be created in a controlled way via strain. Here, we perform a joint theory-experiment study investigating exciton diffusion in strained tungsten disulfide (WS2) monolayers. We reveal a non-trivial and non-monotonic influence of strain. Lattice deformations give rise to different energy shifts for bright and dark excitons changing the excitonic landscape, the efficiency of intervalley scattering channels and the weight of single exciton species to the overall exciton diffusion. We predict a minimal diffusion coefficient in unstrained WS2 followed by a steep speed-up by a factor of 3 for tensile biaxial strain at about 0.6% strain-in excellent agreement with our experiments. The obtained microscopic insights on the impact of strain on exciton diffusion are applicable to a broad class of multi-valley 2D materials.</abstract><pub>IOP Publishing</pub><doi>10.1088/2053-1583/abbd51</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2229-0147</orcidid><orcidid>https://orcid.org/0000-0001-7438-2679</orcidid><orcidid>https://orcid.org/0000-0002-2368-2548</orcidid><orcidid>https://orcid.org/0000-0002-2514-3425</orcidid><orcidid>https://orcid.org/0000-0002-8856-3347</orcidid><orcidid>https://orcid.org/0000-0001-8823-1302</orcidid><orcidid>https://orcid.org/0000-0003-3584-0635</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2053-1583
ispartof 2d materials, 2021-01, Vol.8 (1), p.15030
issn 2053-1583
2053-1583
language eng
recordid cdi_crossref_primary_10_1088_2053_1583_abbd51
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects dark excitons
exciton diffusion
strain
title Strain-dependent exciton diffusion in transition metal dichalcogenides
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A15%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain-dependent%20exciton%20diffusion%20in%20transition%20metal%20dichalcogenides&rft.jtitle=2d%20materials&rft.au=Rosati,%20Roberto&rft.date=2021-01-01&rft.volume=8&rft.issue=1&rft.spage=15030&rft.pages=15030-&rft.issn=2053-1583&rft.eissn=2053-1583&rft_id=info:doi/10.1088/2053-1583/abbd51&rft_dat=%3Cswepub_cross%3Eoai_research_chalmers_se_a487c19d_bd99_4d51_a9fa_e71c7f36e8ee%3C/swepub_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-874563a3ef2b52c3c735f07f142c364ed27e09642e11c732811e810afc0124583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true