Loading…

Spin coated multilayered CuO/ZnO films with high output power under irradiation

Thin films of pure CuO, pure ZnO and CuO/ZnO multilayers were synthesized using the spin coating technique. CuO and ZnO layers were spin coated for 30 s at speeds of 2000 and 1500 rpm, respectively. All the samples were subsequently annealed at 500 °C for one hour in air. Structural properties of fi...

Full description

Saved in:
Bibliographic Details
Published in:Materials research express 2019-03, Vol.6 (3), p.36415
Main Authors: Samarasekara, P, Karunarathna, P G D C K, Bandaranayake, B M C M, Wickramasinghe, J S T, Fernando, C A N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Thin films of pure CuO, pure ZnO and CuO/ZnO multilayers were synthesized using the spin coating technique. CuO and ZnO layers were spin coated for 30 s at speeds of 2000 and 1500 rpm, respectively. All the samples were subsequently annealed at 500 °C for one hour in air. Structural properties of films investigated using XRD patterns indicated the crystallization of single phase of CuO and ZnO. Optical band gaps of samples determined by UV-Visible spectrums were in the range of the band gaps of CuO and ZnO. The main objective of the preparation of multilayered CuO/ZnO was enhancing the output power by combining wide band gap and narrow band gap materials. CuO with higher photocurrent and ZnO with higher photovoltage were employed to achieve this task. Photocurrent, photovoltage and impedance were measured in order to investigate the electrical properties of these samples. A liquid junction photocell with electrolyte potassium iodide (KI) was employed to measure photovoltaic properties. A multilayer with ZnO as the top layer provides a higher output power of 3.6 W cm−2 compared to the output power of a multilayer with CuO as the top layer (1.1 W cm−2). This is the highest output power reported for a multilayer of CuO/ZnO without any dye coating in KI electrolyte. The highest output power of our multilayered samples is more than twice the previously reported highest output powers of pure CuO and pure ZnO thin film samples without dye coating. Chemical properties of samples were confirmed by FTIR. Crystallite sizes were in the range from 23 to 28 nm. Impedance curves of the samples were measured under dark and light conditions. Two semicircles could be observed at Nyquist plots of both multilayer samples.
ISSN:2053-1591
2053-1591
DOI:10.1088/2053-1591/aaf7a5