Loading…
Green biogenic synthesis of magnetite nanoparticles from indigenous Banksia Ashbyi leaf for enhanced sonochemical dye degradation
Developing alternative green and sustainable technologies to prevent, reduce, and remove toxic dyes present in effluent generated by the textile industry is of global importance. In this study, magnetite (Fe 3 O 4 ) nanoparticles (MNPs) were successfully synthesized using a co-precipitation method t...
Saved in:
Published in: | Materials research express 2024-11, Vol.11 (11), p.115004 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c299t-1ed5a4fb6a263ad48b8145dc3f45aaea9f35673f332a1583f715479c0eac3f713 |
container_end_page | |
container_issue | 11 |
container_start_page | 115004 |
container_title | Materials research express |
container_volume | 11 |
creator | Halim, A F M Fahad Poinern, Gérrard Eddy Jai Fawcett, Derek Anguelov, Nikolay Sharma, Rupam Chapman, Peter Feng, Yuanyuan |
description | Developing alternative green and sustainable technologies to prevent, reduce, and remove toxic dyes present in effluent generated by the textile industry is of global importance. In this study, magnetite (Fe 3 O 4 ) nanoparticles (MNPs) were successfully synthesized using a co-precipitation method that used Indigenous Banksia Ashbyi (BA) leaf extract in varying amounts (BA-MNP 1 to BA-MNP 4), to modulate particle size and size distribution. The formation of the MNPs was confirmed by a range of characterization techniques that included UV–visible spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, x-ray diffraction (XRD) spectroscopy, thermo-gravimetric analysis (TGA) and scanning (FIBSEM) and high-resolution transmission (HRTEM) electron microscopy. The presence of the Fe–O bond located at 551 cm −1 in the FTIR spectra and XRD analysis of the samples confirmed the formation of crystalline MNPs. FIBSEM and HRTEM images of the BA-MNP 4 sample confirmed the MNPs were spherical (18 ± 5 nm) and tended to agglomerate. Moreover, UV–visible spectrophotometry revealed a board absorption band and an optical band-gap energy of 2.65 eV. The catalytic activity of BA-MNP 4 samples towards the degradation of a commercially available navy-blue RIT dye (BRD) were investigated under three operational senarios: 1) ultrasonic irradiation (US) + BRD; 2) BA-MNP 4 + BRD, and 3) US + BRD + BA-MNP 4. The investigation found there was an additive effect when US (80 W) was used in conjunction with BA-MNP 4 s during the dye degradation process. With no US, the BA-MNP 4 sample only achieved a dye degradation of 52% in 25 min. However, over the same period of time with US, the BA-MNP 4 sample achieved a dye degradation of 89.92%. In addition, kinetic modelling found the combined US and BA-MNP 4 process followed a pseudo-first-order kinetic model. |
doi_str_mv | 10.1088/2053-1591/ad8ca0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2053_1591_ad8ca0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bb6d037caffe4e0c9090d93e353251b3</doaj_id><sourcerecordid>3125460758</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-1ed5a4fb6a263ad48b8145dc3f45aaea9f35673f332a1583f715479c0eac3f713</originalsourceid><addsrcrecordid>eNp1UT1PwzAQtRBIVIWd0RIrBTuOk3iEii-pEgvM1sU-ty6tXex06Mg_JyWosDDd3dO9d-_0CLng7JqzprkpmBQTLhW_AdsYYEdkdICO__Sn5DznJWOsqJWQRTUin48JMdDWxzkGb2jehW6B2WcaHV3DPGDnO6QBQtxA6rxZYaYuxTX1wfqeE7eZ3kF4zx7obV60O09XCI66mCiGBQSDluYYolng2htYUbtDanGewELnYzgjJw5WGc9_6pi8Pdy_Tp8ms5fH5-ntbGIKpboJRyuhdG0FRSXAlk3b8FJaI1wpARCUE7KqhROiAC4b4Wouy1oZhmD2gxiT50HXRljqTfJrSDsdwetvIKa5_nlQt21lmagNOIclMqOYYlYJFFIUkrei17octDYpfmwxd3oZtyn09rXghSwrVvcWxoQNWybFnBO6w1XO9D43vQ9G74PRQ2495Wqg-Lj51fx3_QtKNZuD</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3125460758</pqid></control><display><type>article</type><title>Green biogenic synthesis of magnetite nanoparticles from indigenous Banksia Ashbyi leaf for enhanced sonochemical dye degradation</title><source>ProQuest - Publicly Available Content Database</source><creator>Halim, A F M Fahad ; Poinern, Gérrard Eddy Jai ; Fawcett, Derek ; Anguelov, Nikolay ; Sharma, Rupam ; Chapman, Peter ; Feng, Yuanyuan</creator><creatorcontrib>Halim, A F M Fahad ; Poinern, Gérrard Eddy Jai ; Fawcett, Derek ; Anguelov, Nikolay ; Sharma, Rupam ; Chapman, Peter ; Feng, Yuanyuan</creatorcontrib><description>Developing alternative green and sustainable technologies to prevent, reduce, and remove toxic dyes present in effluent generated by the textile industry is of global importance. In this study, magnetite (Fe 3 O 4 ) nanoparticles (MNPs) were successfully synthesized using a co-precipitation method that used Indigenous Banksia Ashbyi (BA) leaf extract in varying amounts (BA-MNP 1 to BA-MNP 4), to modulate particle size and size distribution. The formation of the MNPs was confirmed by a range of characterization techniques that included UV–visible spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, x-ray diffraction (XRD) spectroscopy, thermo-gravimetric analysis (TGA) and scanning (FIBSEM) and high-resolution transmission (HRTEM) electron microscopy. The presence of the Fe–O bond located at 551 cm −1 in the FTIR spectra and XRD analysis of the samples confirmed the formation of crystalline MNPs. FIBSEM and HRTEM images of the BA-MNP 4 sample confirmed the MNPs were spherical (18 ± 5 nm) and tended to agglomerate. Moreover, UV–visible spectrophotometry revealed a board absorption band and an optical band-gap energy of 2.65 eV. The catalytic activity of BA-MNP 4 samples towards the degradation of a commercially available navy-blue RIT dye (BRD) were investigated under three operational senarios: 1) ultrasonic irradiation (US) + BRD; 2) BA-MNP 4 + BRD, and 3) US + BRD + BA-MNP 4. The investigation found there was an additive effect when US (80 W) was used in conjunction with BA-MNP 4 s during the dye degradation process. With no US, the BA-MNP 4 sample only achieved a dye degradation of 52% in 25 min. However, over the same period of time with US, the BA-MNP 4 sample achieved a dye degradation of 89.92%. In addition, kinetic modelling found the combined US and BA-MNP 4 process followed a pseudo-first-order kinetic model.</description><identifier>ISSN: 2053-1591</identifier><identifier>EISSN: 2053-1591</identifier><identifier>DOI: 10.1088/2053-1591/ad8ca0</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Absorption spectra ; Catalytic activity ; co-precipitation ; Degradation ; dye degradation ; Dyes ; eco-friendly Fe ; eco-friendly Fe3O4 nanoparticles ; Energy gap ; fast-fashion ; Fourier transforms ; green synthesis ; Industrial development ; Infrared analysis ; Infrared spectrophotometers ; Infrared spectroscopy ; Iron oxides ; Magnetite ; Nanoparticles ; Particle size distribution ; Spectrophotometry ; Spectrum analysis ; textile effluents ; Thermogravimetric analysis ; X-ray diffraction</subject><ispartof>Materials research express, 2024-11, Vol.11 (11), p.115004</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><rights>2024 The Author(s). Published by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c299t-1ed5a4fb6a263ad48b8145dc3f45aaea9f35673f332a1583f715479c0eac3f713</cites><orcidid>0000-0003-0937-4482 ; 0000-0003-3563-4866 ; 0009-0004-9216-5714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3125460758?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Halim, A F M Fahad</creatorcontrib><creatorcontrib>Poinern, Gérrard Eddy Jai</creatorcontrib><creatorcontrib>Fawcett, Derek</creatorcontrib><creatorcontrib>Anguelov, Nikolay</creatorcontrib><creatorcontrib>Sharma, Rupam</creatorcontrib><creatorcontrib>Chapman, Peter</creatorcontrib><creatorcontrib>Feng, Yuanyuan</creatorcontrib><title>Green biogenic synthesis of magnetite nanoparticles from indigenous Banksia Ashbyi leaf for enhanced sonochemical dye degradation</title><title>Materials research express</title><addtitle>MRX</addtitle><addtitle>Mater. Res. Express</addtitle><description>Developing alternative green and sustainable technologies to prevent, reduce, and remove toxic dyes present in effluent generated by the textile industry is of global importance. In this study, magnetite (Fe 3 O 4 ) nanoparticles (MNPs) were successfully synthesized using a co-precipitation method that used Indigenous Banksia Ashbyi (BA) leaf extract in varying amounts (BA-MNP 1 to BA-MNP 4), to modulate particle size and size distribution. The formation of the MNPs was confirmed by a range of characterization techniques that included UV–visible spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, x-ray diffraction (XRD) spectroscopy, thermo-gravimetric analysis (TGA) and scanning (FIBSEM) and high-resolution transmission (HRTEM) electron microscopy. The presence of the Fe–O bond located at 551 cm −1 in the FTIR spectra and XRD analysis of the samples confirmed the formation of crystalline MNPs. FIBSEM and HRTEM images of the BA-MNP 4 sample confirmed the MNPs were spherical (18 ± 5 nm) and tended to agglomerate. Moreover, UV–visible spectrophotometry revealed a board absorption band and an optical band-gap energy of 2.65 eV. The catalytic activity of BA-MNP 4 samples towards the degradation of a commercially available navy-blue RIT dye (BRD) were investigated under three operational senarios: 1) ultrasonic irradiation (US) + BRD; 2) BA-MNP 4 + BRD, and 3) US + BRD + BA-MNP 4. The investigation found there was an additive effect when US (80 W) was used in conjunction with BA-MNP 4 s during the dye degradation process. With no US, the BA-MNP 4 sample only achieved a dye degradation of 52% in 25 min. However, over the same period of time with US, the BA-MNP 4 sample achieved a dye degradation of 89.92%. In addition, kinetic modelling found the combined US and BA-MNP 4 process followed a pseudo-first-order kinetic model.</description><subject>Absorption spectra</subject><subject>Catalytic activity</subject><subject>co-precipitation</subject><subject>Degradation</subject><subject>dye degradation</subject><subject>Dyes</subject><subject>eco-friendly Fe</subject><subject>eco-friendly Fe3O4 nanoparticles</subject><subject>Energy gap</subject><subject>fast-fashion</subject><subject>Fourier transforms</subject><subject>green synthesis</subject><subject>Industrial development</subject><subject>Infrared analysis</subject><subject>Infrared spectrophotometers</subject><subject>Infrared spectroscopy</subject><subject>Iron oxides</subject><subject>Magnetite</subject><subject>Nanoparticles</subject><subject>Particle size distribution</subject><subject>Spectrophotometry</subject><subject>Spectrum analysis</subject><subject>textile effluents</subject><subject>Thermogravimetric analysis</subject><subject>X-ray diffraction</subject><issn>2053-1591</issn><issn>2053-1591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1UT1PwzAQtRBIVIWd0RIrBTuOk3iEii-pEgvM1sU-ty6tXex06Mg_JyWosDDd3dO9d-_0CLng7JqzprkpmBQTLhW_AdsYYEdkdICO__Sn5DznJWOsqJWQRTUin48JMdDWxzkGb2jehW6B2WcaHV3DPGDnO6QBQtxA6rxZYaYuxTX1wfqeE7eZ3kF4zx7obV60O09XCI66mCiGBQSDluYYolng2htYUbtDanGewELnYzgjJw5WGc9_6pi8Pdy_Tp8ms5fH5-ntbGIKpboJRyuhdG0FRSXAlk3b8FJaI1wpARCUE7KqhROiAC4b4Wouy1oZhmD2gxiT50HXRljqTfJrSDsdwetvIKa5_nlQt21lmagNOIclMqOYYlYJFFIUkrei17octDYpfmwxd3oZtyn09rXghSwrVvcWxoQNWybFnBO6w1XO9D43vQ9G74PRQ2495Wqg-Lj51fx3_QtKNZuD</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Halim, A F M Fahad</creator><creator>Poinern, Gérrard Eddy Jai</creator><creator>Fawcett, Derek</creator><creator>Anguelov, Nikolay</creator><creator>Sharma, Rupam</creator><creator>Chapman, Peter</creator><creator>Feng, Yuanyuan</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0937-4482</orcidid><orcidid>https://orcid.org/0000-0003-3563-4866</orcidid><orcidid>https://orcid.org/0009-0004-9216-5714</orcidid></search><sort><creationdate>20241101</creationdate><title>Green biogenic synthesis of magnetite nanoparticles from indigenous Banksia Ashbyi leaf for enhanced sonochemical dye degradation</title><author>Halim, A F M Fahad ; Poinern, Gérrard Eddy Jai ; Fawcett, Derek ; Anguelov, Nikolay ; Sharma, Rupam ; Chapman, Peter ; Feng, Yuanyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-1ed5a4fb6a263ad48b8145dc3f45aaea9f35673f332a1583f715479c0eac3f713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption spectra</topic><topic>Catalytic activity</topic><topic>co-precipitation</topic><topic>Degradation</topic><topic>dye degradation</topic><topic>Dyes</topic><topic>eco-friendly Fe</topic><topic>eco-friendly Fe3O4 nanoparticles</topic><topic>Energy gap</topic><topic>fast-fashion</topic><topic>Fourier transforms</topic><topic>green synthesis</topic><topic>Industrial development</topic><topic>Infrared analysis</topic><topic>Infrared spectrophotometers</topic><topic>Infrared spectroscopy</topic><topic>Iron oxides</topic><topic>Magnetite</topic><topic>Nanoparticles</topic><topic>Particle size distribution</topic><topic>Spectrophotometry</topic><topic>Spectrum analysis</topic><topic>textile effluents</topic><topic>Thermogravimetric analysis</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halim, A F M Fahad</creatorcontrib><creatorcontrib>Poinern, Gérrard Eddy Jai</creatorcontrib><creatorcontrib>Fawcett, Derek</creatorcontrib><creatorcontrib>Anguelov, Nikolay</creatorcontrib><creatorcontrib>Sharma, Rupam</creatorcontrib><creatorcontrib>Chapman, Peter</creatorcontrib><creatorcontrib>Feng, Yuanyuan</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials science collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Materials research express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halim, A F M Fahad</au><au>Poinern, Gérrard Eddy Jai</au><au>Fawcett, Derek</au><au>Anguelov, Nikolay</au><au>Sharma, Rupam</au><au>Chapman, Peter</au><au>Feng, Yuanyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Green biogenic synthesis of magnetite nanoparticles from indigenous Banksia Ashbyi leaf for enhanced sonochemical dye degradation</atitle><jtitle>Materials research express</jtitle><stitle>MRX</stitle><addtitle>Mater. Res. Express</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>11</volume><issue>11</issue><spage>115004</spage><pages>115004-</pages><issn>2053-1591</issn><eissn>2053-1591</eissn><abstract>Developing alternative green and sustainable technologies to prevent, reduce, and remove toxic dyes present in effluent generated by the textile industry is of global importance. In this study, magnetite (Fe 3 O 4 ) nanoparticles (MNPs) were successfully synthesized using a co-precipitation method that used Indigenous Banksia Ashbyi (BA) leaf extract in varying amounts (BA-MNP 1 to BA-MNP 4), to modulate particle size and size distribution. The formation of the MNPs was confirmed by a range of characterization techniques that included UV–visible spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, x-ray diffraction (XRD) spectroscopy, thermo-gravimetric analysis (TGA) and scanning (FIBSEM) and high-resolution transmission (HRTEM) electron microscopy. The presence of the Fe–O bond located at 551 cm −1 in the FTIR spectra and XRD analysis of the samples confirmed the formation of crystalline MNPs. FIBSEM and HRTEM images of the BA-MNP 4 sample confirmed the MNPs were spherical (18 ± 5 nm) and tended to agglomerate. Moreover, UV–visible spectrophotometry revealed a board absorption band and an optical band-gap energy of 2.65 eV. The catalytic activity of BA-MNP 4 samples towards the degradation of a commercially available navy-blue RIT dye (BRD) were investigated under three operational senarios: 1) ultrasonic irradiation (US) + BRD; 2) BA-MNP 4 + BRD, and 3) US + BRD + BA-MNP 4. The investigation found there was an additive effect when US (80 W) was used in conjunction with BA-MNP 4 s during the dye degradation process. With no US, the BA-MNP 4 sample only achieved a dye degradation of 52% in 25 min. However, over the same period of time with US, the BA-MNP 4 sample achieved a dye degradation of 89.92%. In addition, kinetic modelling found the combined US and BA-MNP 4 process followed a pseudo-first-order kinetic model.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2053-1591/ad8ca0</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0937-4482</orcidid><orcidid>https://orcid.org/0000-0003-3563-4866</orcidid><orcidid>https://orcid.org/0009-0004-9216-5714</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2053-1591 |
ispartof | Materials research express, 2024-11, Vol.11 (11), p.115004 |
issn | 2053-1591 2053-1591 |
language | eng |
recordid | cdi_crossref_primary_10_1088_2053_1591_ad8ca0 |
source | ProQuest - Publicly Available Content Database |
subjects | Absorption spectra Catalytic activity co-precipitation Degradation dye degradation Dyes eco-friendly Fe eco-friendly Fe3O4 nanoparticles Energy gap fast-fashion Fourier transforms green synthesis Industrial development Infrared analysis Infrared spectrophotometers Infrared spectroscopy Iron oxides Magnetite Nanoparticles Particle size distribution Spectrophotometry Spectrum analysis textile effluents Thermogravimetric analysis X-ray diffraction |
title | Green biogenic synthesis of magnetite nanoparticles from indigenous Banksia Ashbyi leaf for enhanced sonochemical dye degradation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A29%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Green%20biogenic%20synthesis%20of%20magnetite%20nanoparticles%20from%20indigenous%20Banksia%20Ashbyi%20leaf%20for%20enhanced%20sonochemical%20dye%20degradation&rft.jtitle=Materials%20research%20express&rft.au=Halim,%20A%20F%20M%20Fahad&rft.date=2024-11-01&rft.volume=11&rft.issue=11&rft.spage=115004&rft.pages=115004-&rft.issn=2053-1591&rft.eissn=2053-1591&rft_id=info:doi/10.1088/2053-1591/ad8ca0&rft_dat=%3Cproquest_cross%3E3125460758%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c299t-1ed5a4fb6a263ad48b8145dc3f45aaea9f35673f332a1583f715479c0eac3f713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3125460758&rft_id=info:pmid/&rfr_iscdi=true |