Loading…

Green biogenic synthesis of magnetite nanoparticles from indigenous Banksia Ashbyi leaf for enhanced sonochemical dye degradation

Developing alternative green and sustainable technologies to prevent, reduce, and remove toxic dyes present in effluent generated by the textile industry is of global importance. In this study, magnetite (Fe 3 O 4 ) nanoparticles (MNPs) were successfully synthesized using a co-precipitation method t...

Full description

Saved in:
Bibliographic Details
Published in:Materials research express 2024-11, Vol.11 (11), p.115004
Main Authors: Halim, A F M Fahad, Poinern, Gérrard Eddy Jai, Fawcett, Derek, Anguelov, Nikolay, Sharma, Rupam, Chapman, Peter, Feng, Yuanyuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c299t-1ed5a4fb6a263ad48b8145dc3f45aaea9f35673f332a1583f715479c0eac3f713
container_end_page
container_issue 11
container_start_page 115004
container_title Materials research express
container_volume 11
creator Halim, A F M Fahad
Poinern, Gérrard Eddy Jai
Fawcett, Derek
Anguelov, Nikolay
Sharma, Rupam
Chapman, Peter
Feng, Yuanyuan
description Developing alternative green and sustainable technologies to prevent, reduce, and remove toxic dyes present in effluent generated by the textile industry is of global importance. In this study, magnetite (Fe 3 O 4 ) nanoparticles (MNPs) were successfully synthesized using a co-precipitation method that used Indigenous Banksia Ashbyi (BA) leaf extract in varying amounts (BA-MNP 1 to BA-MNP 4), to modulate particle size and size distribution. The formation of the MNPs was confirmed by a range of characterization techniques that included UV–visible spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, x-ray diffraction (XRD) spectroscopy, thermo-gravimetric analysis (TGA) and scanning (FIBSEM) and high-resolution transmission (HRTEM) electron microscopy. The presence of the Fe–O bond located at 551 cm −1 in the FTIR spectra and XRD analysis of the samples confirmed the formation of crystalline MNPs. FIBSEM and HRTEM images of the BA-MNP 4 sample confirmed the MNPs were spherical (18 ± 5 nm) and tended to agglomerate. Moreover, UV–visible spectrophotometry revealed a board absorption band and an optical band-gap energy of 2.65 eV. The catalytic activity of BA-MNP 4 samples towards the degradation of a commercially available navy-blue RIT dye (BRD) were investigated under three operational senarios: 1) ultrasonic irradiation (US) + BRD; 2) BA-MNP 4 + BRD, and 3) US + BRD + BA-MNP 4. The investigation found there was an additive effect when US (80 W) was used in conjunction with BA-MNP 4 s during the dye degradation process. With no US, the BA-MNP 4 sample only achieved a dye degradation of 52% in 25 min. However, over the same period of time with US, the BA-MNP 4 sample achieved a dye degradation of 89.92%. In addition, kinetic modelling found the combined US and BA-MNP 4 process followed a pseudo-first-order kinetic model.
doi_str_mv 10.1088/2053-1591/ad8ca0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2053_1591_ad8ca0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bb6d037caffe4e0c9090d93e353251b3</doaj_id><sourcerecordid>3125460758</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-1ed5a4fb6a263ad48b8145dc3f45aaea9f35673f332a1583f715479c0eac3f713</originalsourceid><addsrcrecordid>eNp1UT1PwzAQtRBIVIWd0RIrBTuOk3iEii-pEgvM1sU-ty6tXex06Mg_JyWosDDd3dO9d-_0CLng7JqzprkpmBQTLhW_AdsYYEdkdICO__Sn5DznJWOsqJWQRTUin48JMdDWxzkGb2jehW6B2WcaHV3DPGDnO6QBQtxA6rxZYaYuxTX1wfqeE7eZ3kF4zx7obV60O09XCI66mCiGBQSDluYYolng2htYUbtDanGewELnYzgjJw5WGc9_6pi8Pdy_Tp8ms5fH5-ntbGIKpboJRyuhdG0FRSXAlk3b8FJaI1wpARCUE7KqhROiAC4b4Wouy1oZhmD2gxiT50HXRljqTfJrSDsdwetvIKa5_nlQt21lmagNOIclMqOYYlYJFFIUkrei17octDYpfmwxd3oZtyn09rXghSwrVvcWxoQNWybFnBO6w1XO9D43vQ9G74PRQ2495Wqg-Lj51fx3_QtKNZuD</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3125460758</pqid></control><display><type>article</type><title>Green biogenic synthesis of magnetite nanoparticles from indigenous Banksia Ashbyi leaf for enhanced sonochemical dye degradation</title><source>ProQuest - Publicly Available Content Database</source><creator>Halim, A F M Fahad ; Poinern, Gérrard Eddy Jai ; Fawcett, Derek ; Anguelov, Nikolay ; Sharma, Rupam ; Chapman, Peter ; Feng, Yuanyuan</creator><creatorcontrib>Halim, A F M Fahad ; Poinern, Gérrard Eddy Jai ; Fawcett, Derek ; Anguelov, Nikolay ; Sharma, Rupam ; Chapman, Peter ; Feng, Yuanyuan</creatorcontrib><description>Developing alternative green and sustainable technologies to prevent, reduce, and remove toxic dyes present in effluent generated by the textile industry is of global importance. In this study, magnetite (Fe 3 O 4 ) nanoparticles (MNPs) were successfully synthesized using a co-precipitation method that used Indigenous Banksia Ashbyi (BA) leaf extract in varying amounts (BA-MNP 1 to BA-MNP 4), to modulate particle size and size distribution. The formation of the MNPs was confirmed by a range of characterization techniques that included UV–visible spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, x-ray diffraction (XRD) spectroscopy, thermo-gravimetric analysis (TGA) and scanning (FIBSEM) and high-resolution transmission (HRTEM) electron microscopy. The presence of the Fe–O bond located at 551 cm −1 in the FTIR spectra and XRD analysis of the samples confirmed the formation of crystalline MNPs. FIBSEM and HRTEM images of the BA-MNP 4 sample confirmed the MNPs were spherical (18 ± 5 nm) and tended to agglomerate. Moreover, UV–visible spectrophotometry revealed a board absorption band and an optical band-gap energy of 2.65 eV. The catalytic activity of BA-MNP 4 samples towards the degradation of a commercially available navy-blue RIT dye (BRD) were investigated under three operational senarios: 1) ultrasonic irradiation (US) + BRD; 2) BA-MNP 4 + BRD, and 3) US + BRD + BA-MNP 4. The investigation found there was an additive effect when US (80 W) was used in conjunction with BA-MNP 4 s during the dye degradation process. With no US, the BA-MNP 4 sample only achieved a dye degradation of 52% in 25 min. However, over the same period of time with US, the BA-MNP 4 sample achieved a dye degradation of 89.92%. In addition, kinetic modelling found the combined US and BA-MNP 4 process followed a pseudo-first-order kinetic model.</description><identifier>ISSN: 2053-1591</identifier><identifier>EISSN: 2053-1591</identifier><identifier>DOI: 10.1088/2053-1591/ad8ca0</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Absorption spectra ; Catalytic activity ; co-precipitation ; Degradation ; dye degradation ; Dyes ; eco-friendly Fe ; eco-friendly Fe3O4 nanoparticles ; Energy gap ; fast-fashion ; Fourier transforms ; green synthesis ; Industrial development ; Infrared analysis ; Infrared spectrophotometers ; Infrared spectroscopy ; Iron oxides ; Magnetite ; Nanoparticles ; Particle size distribution ; Spectrophotometry ; Spectrum analysis ; textile effluents ; Thermogravimetric analysis ; X-ray diffraction</subject><ispartof>Materials research express, 2024-11, Vol.11 (11), p.115004</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><rights>2024 The Author(s). Published by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c299t-1ed5a4fb6a263ad48b8145dc3f45aaea9f35673f332a1583f715479c0eac3f713</cites><orcidid>0000-0003-0937-4482 ; 0000-0003-3563-4866 ; 0009-0004-9216-5714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3125460758?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Halim, A F M Fahad</creatorcontrib><creatorcontrib>Poinern, Gérrard Eddy Jai</creatorcontrib><creatorcontrib>Fawcett, Derek</creatorcontrib><creatorcontrib>Anguelov, Nikolay</creatorcontrib><creatorcontrib>Sharma, Rupam</creatorcontrib><creatorcontrib>Chapman, Peter</creatorcontrib><creatorcontrib>Feng, Yuanyuan</creatorcontrib><title>Green biogenic synthesis of magnetite nanoparticles from indigenous Banksia Ashbyi leaf for enhanced sonochemical dye degradation</title><title>Materials research express</title><addtitle>MRX</addtitle><addtitle>Mater. Res. Express</addtitle><description>Developing alternative green and sustainable technologies to prevent, reduce, and remove toxic dyes present in effluent generated by the textile industry is of global importance. In this study, magnetite (Fe 3 O 4 ) nanoparticles (MNPs) were successfully synthesized using a co-precipitation method that used Indigenous Banksia Ashbyi (BA) leaf extract in varying amounts (BA-MNP 1 to BA-MNP 4), to modulate particle size and size distribution. The formation of the MNPs was confirmed by a range of characterization techniques that included UV–visible spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, x-ray diffraction (XRD) spectroscopy, thermo-gravimetric analysis (TGA) and scanning (FIBSEM) and high-resolution transmission (HRTEM) electron microscopy. The presence of the Fe–O bond located at 551 cm −1 in the FTIR spectra and XRD analysis of the samples confirmed the formation of crystalline MNPs. FIBSEM and HRTEM images of the BA-MNP 4 sample confirmed the MNPs were spherical (18 ± 5 nm) and tended to agglomerate. Moreover, UV–visible spectrophotometry revealed a board absorption band and an optical band-gap energy of 2.65 eV. The catalytic activity of BA-MNP 4 samples towards the degradation of a commercially available navy-blue RIT dye (BRD) were investigated under three operational senarios: 1) ultrasonic irradiation (US) + BRD; 2) BA-MNP 4 + BRD, and 3) US + BRD + BA-MNP 4. The investigation found there was an additive effect when US (80 W) was used in conjunction with BA-MNP 4 s during the dye degradation process. With no US, the BA-MNP 4 sample only achieved a dye degradation of 52% in 25 min. However, over the same period of time with US, the BA-MNP 4 sample achieved a dye degradation of 89.92%. In addition, kinetic modelling found the combined US and BA-MNP 4 process followed a pseudo-first-order kinetic model.</description><subject>Absorption spectra</subject><subject>Catalytic activity</subject><subject>co-precipitation</subject><subject>Degradation</subject><subject>dye degradation</subject><subject>Dyes</subject><subject>eco-friendly Fe</subject><subject>eco-friendly Fe3O4 nanoparticles</subject><subject>Energy gap</subject><subject>fast-fashion</subject><subject>Fourier transforms</subject><subject>green synthesis</subject><subject>Industrial development</subject><subject>Infrared analysis</subject><subject>Infrared spectrophotometers</subject><subject>Infrared spectroscopy</subject><subject>Iron oxides</subject><subject>Magnetite</subject><subject>Nanoparticles</subject><subject>Particle size distribution</subject><subject>Spectrophotometry</subject><subject>Spectrum analysis</subject><subject>textile effluents</subject><subject>Thermogravimetric analysis</subject><subject>X-ray diffraction</subject><issn>2053-1591</issn><issn>2053-1591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1UT1PwzAQtRBIVIWd0RIrBTuOk3iEii-pEgvM1sU-ty6tXex06Mg_JyWosDDd3dO9d-_0CLng7JqzprkpmBQTLhW_AdsYYEdkdICO__Sn5DznJWOsqJWQRTUin48JMdDWxzkGb2jehW6B2WcaHV3DPGDnO6QBQtxA6rxZYaYuxTX1wfqeE7eZ3kF4zx7obV60O09XCI66mCiGBQSDluYYolng2htYUbtDanGewELnYzgjJw5WGc9_6pi8Pdy_Tp8ms5fH5-ntbGIKpboJRyuhdG0FRSXAlk3b8FJaI1wpARCUE7KqhROiAC4b4Wouy1oZhmD2gxiT50HXRljqTfJrSDsdwetvIKa5_nlQt21lmagNOIclMqOYYlYJFFIUkrei17octDYpfmwxd3oZtyn09rXghSwrVvcWxoQNWybFnBO6w1XO9D43vQ9G74PRQ2495Wqg-Lj51fx3_QtKNZuD</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Halim, A F M Fahad</creator><creator>Poinern, Gérrard Eddy Jai</creator><creator>Fawcett, Derek</creator><creator>Anguelov, Nikolay</creator><creator>Sharma, Rupam</creator><creator>Chapman, Peter</creator><creator>Feng, Yuanyuan</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0937-4482</orcidid><orcidid>https://orcid.org/0000-0003-3563-4866</orcidid><orcidid>https://orcid.org/0009-0004-9216-5714</orcidid></search><sort><creationdate>20241101</creationdate><title>Green biogenic synthesis of magnetite nanoparticles from indigenous Banksia Ashbyi leaf for enhanced sonochemical dye degradation</title><author>Halim, A F M Fahad ; Poinern, Gérrard Eddy Jai ; Fawcett, Derek ; Anguelov, Nikolay ; Sharma, Rupam ; Chapman, Peter ; Feng, Yuanyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-1ed5a4fb6a263ad48b8145dc3f45aaea9f35673f332a1583f715479c0eac3f713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption spectra</topic><topic>Catalytic activity</topic><topic>co-precipitation</topic><topic>Degradation</topic><topic>dye degradation</topic><topic>Dyes</topic><topic>eco-friendly Fe</topic><topic>eco-friendly Fe3O4 nanoparticles</topic><topic>Energy gap</topic><topic>fast-fashion</topic><topic>Fourier transforms</topic><topic>green synthesis</topic><topic>Industrial development</topic><topic>Infrared analysis</topic><topic>Infrared spectrophotometers</topic><topic>Infrared spectroscopy</topic><topic>Iron oxides</topic><topic>Magnetite</topic><topic>Nanoparticles</topic><topic>Particle size distribution</topic><topic>Spectrophotometry</topic><topic>Spectrum analysis</topic><topic>textile effluents</topic><topic>Thermogravimetric analysis</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halim, A F M Fahad</creatorcontrib><creatorcontrib>Poinern, Gérrard Eddy Jai</creatorcontrib><creatorcontrib>Fawcett, Derek</creatorcontrib><creatorcontrib>Anguelov, Nikolay</creatorcontrib><creatorcontrib>Sharma, Rupam</creatorcontrib><creatorcontrib>Chapman, Peter</creatorcontrib><creatorcontrib>Feng, Yuanyuan</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials science collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Materials research express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halim, A F M Fahad</au><au>Poinern, Gérrard Eddy Jai</au><au>Fawcett, Derek</au><au>Anguelov, Nikolay</au><au>Sharma, Rupam</au><au>Chapman, Peter</au><au>Feng, Yuanyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Green biogenic synthesis of magnetite nanoparticles from indigenous Banksia Ashbyi leaf for enhanced sonochemical dye degradation</atitle><jtitle>Materials research express</jtitle><stitle>MRX</stitle><addtitle>Mater. Res. Express</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>11</volume><issue>11</issue><spage>115004</spage><pages>115004-</pages><issn>2053-1591</issn><eissn>2053-1591</eissn><abstract>Developing alternative green and sustainable technologies to prevent, reduce, and remove toxic dyes present in effluent generated by the textile industry is of global importance. In this study, magnetite (Fe 3 O 4 ) nanoparticles (MNPs) were successfully synthesized using a co-precipitation method that used Indigenous Banksia Ashbyi (BA) leaf extract in varying amounts (BA-MNP 1 to BA-MNP 4), to modulate particle size and size distribution. The formation of the MNPs was confirmed by a range of characterization techniques that included UV–visible spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, x-ray diffraction (XRD) spectroscopy, thermo-gravimetric analysis (TGA) and scanning (FIBSEM) and high-resolution transmission (HRTEM) electron microscopy. The presence of the Fe–O bond located at 551 cm −1 in the FTIR spectra and XRD analysis of the samples confirmed the formation of crystalline MNPs. FIBSEM and HRTEM images of the BA-MNP 4 sample confirmed the MNPs were spherical (18 ± 5 nm) and tended to agglomerate. Moreover, UV–visible spectrophotometry revealed a board absorption band and an optical band-gap energy of 2.65 eV. The catalytic activity of BA-MNP 4 samples towards the degradation of a commercially available navy-blue RIT dye (BRD) were investigated under three operational senarios: 1) ultrasonic irradiation (US) + BRD; 2) BA-MNP 4 + BRD, and 3) US + BRD + BA-MNP 4. The investigation found there was an additive effect when US (80 W) was used in conjunction with BA-MNP 4 s during the dye degradation process. With no US, the BA-MNP 4 sample only achieved a dye degradation of 52% in 25 min. However, over the same period of time with US, the BA-MNP 4 sample achieved a dye degradation of 89.92%. In addition, kinetic modelling found the combined US and BA-MNP 4 process followed a pseudo-first-order kinetic model.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2053-1591/ad8ca0</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0937-4482</orcidid><orcidid>https://orcid.org/0000-0003-3563-4866</orcidid><orcidid>https://orcid.org/0009-0004-9216-5714</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2053-1591
ispartof Materials research express, 2024-11, Vol.11 (11), p.115004
issn 2053-1591
2053-1591
language eng
recordid cdi_crossref_primary_10_1088_2053_1591_ad8ca0
source ProQuest - Publicly Available Content Database
subjects Absorption spectra
Catalytic activity
co-precipitation
Degradation
dye degradation
Dyes
eco-friendly Fe
eco-friendly Fe3O4 nanoparticles
Energy gap
fast-fashion
Fourier transforms
green synthesis
Industrial development
Infrared analysis
Infrared spectrophotometers
Infrared spectroscopy
Iron oxides
Magnetite
Nanoparticles
Particle size distribution
Spectrophotometry
Spectrum analysis
textile effluents
Thermogravimetric analysis
X-ray diffraction
title Green biogenic synthesis of magnetite nanoparticles from indigenous Banksia Ashbyi leaf for enhanced sonochemical dye degradation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A29%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Green%20biogenic%20synthesis%20of%20magnetite%20nanoparticles%20from%20indigenous%20Banksia%20Ashbyi%20leaf%20for%20enhanced%20sonochemical%20dye%20degradation&rft.jtitle=Materials%20research%20express&rft.au=Halim,%20A%20F%20M%20Fahad&rft.date=2024-11-01&rft.volume=11&rft.issue=11&rft.spage=115004&rft.pages=115004-&rft.issn=2053-1591&rft.eissn=2053-1591&rft_id=info:doi/10.1088/2053-1591/ad8ca0&rft_dat=%3Cproquest_cross%3E3125460758%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c299t-1ed5a4fb6a263ad48b8145dc3f45aaea9f35673f332a1583f715479c0eac3f713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3125460758&rft_id=info:pmid/&rfr_iscdi=true