Loading…

Simulating the extrinsic regulation of the sinoatrial node cells using a unified computational model

The aim of this work is to develop a computational model to study the extrinsic regulation of the heart rate variability (HRV) during sympathetic and/or vagal stimulation. The model here proposed is based on two recent models of the sinoatrial node cell (SANC) action potential and the influence of t...

Full description

Saved in:
Bibliographic Details
Published in:Biomedical physics & engineering express 2017-05, Vol.3 (3), p.35009
Main Authors: Castellanos, N P, Godinez, R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c242t-757697505783af4ce284845dff4dac881300ea5699bd18cc95a7221190c86df73
cites cdi_FETCH-LOGICAL-c242t-757697505783af4ce284845dff4dac881300ea5699bd18cc95a7221190c86df73
container_end_page
container_issue 3
container_start_page 35009
container_title Biomedical physics & engineering express
container_volume 3
creator Castellanos, N P
Godinez, R
description The aim of this work is to develop a computational model to study the extrinsic regulation of the heart rate variability (HRV) during sympathetic and/or vagal stimulation. The model here proposed is based on two recent models of the sinoatrial node cell (SANC) action potential and the influence of the autonomic nervous system (ANS) on the activity of ionic channels of SANCs. The HRV was simulated by applying a random frequency stimulation using both a normal and a beta probability density function (PDF) for different ranges of stimulation frequencies. The HRV was then analyzed by computing the scale exponent using detrended fluctuation analysis. We found that our model reproduces the value of the scale exponent observed in healthy humans ( = 1.07 0.05) when simultaneous vagal and sympathetic stimulus (with beta and normal PDFs, respectively) over the frequency range from 0 to 10 Hz are applied. Our model also predicts a Brownian motion behavior when the muscarinic receptors are blocked ( = 1.8) and the white noise behavior when the b-adrenergic receptors are blocked ( = 0.5). Our results shed light on how the ANS regulates the HRV in healthy conditions, where it is not enough to consider only one stimulation pathway with a simple normal PDF.
doi_str_mv 10.1088/2057-1976/aa6bff
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2057_1976_aa6bff</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>bpexaa6bff</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-757697505783af4ce284845dff4dac881300ea5699bd18cc95a7221190c86df73</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWGrvHnPz4toku_k6SlErFDyo55Dmo6bsbpbNLtT_3mwr4kFkDjPM-71heABcY3SHkRBLgigvsORsqTXben8GZj-r81_zJViktEcIYUYYk3QG7GtoxloPod3B4cNBdxj60KZgYO92RyG2MPqjlkIbdZZ1DdtoHTSurhMc0-TVcGyDD85CE5tuHI7GDDYZrK_Ahdd1covvPgfvjw9vq3WxeXl6Xt1vCkMqMhScciY5zc-KUvvKOCIqUVHrfWW1EQKXCDlNmZRbi4UxkmpOCMYSGcGs5-UcoNNd08eUeudV14dG958KIzUFpaYk1JSEOgWVLbcnS4id2sexz0-n__CbP_Bt5w6qzIVKipBUnfXlF5NbeYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Simulating the extrinsic regulation of the sinoatrial node cells using a unified computational model</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Castellanos, N P ; Godinez, R</creator><creatorcontrib>Castellanos, N P ; Godinez, R</creatorcontrib><description>The aim of this work is to develop a computational model to study the extrinsic regulation of the heart rate variability (HRV) during sympathetic and/or vagal stimulation. The model here proposed is based on two recent models of the sinoatrial node cell (SANC) action potential and the influence of the autonomic nervous system (ANS) on the activity of ionic channels of SANCs. The HRV was simulated by applying a random frequency stimulation using both a normal and a beta probability density function (PDF) for different ranges of stimulation frequencies. The HRV was then analyzed by computing the scale exponent using detrended fluctuation analysis. We found that our model reproduces the value of the scale exponent observed in healthy humans ( = 1.07 0.05) when simultaneous vagal and sympathetic stimulus (with beta and normal PDFs, respectively) over the frequency range from 0 to 10 Hz are applied. Our model also predicts a Brownian motion behavior when the muscarinic receptors are blocked ( = 1.8) and the white noise behavior when the b-adrenergic receptors are blocked ( = 0.5). Our results shed light on how the ANS regulates the HRV in healthy conditions, where it is not enough to consider only one stimulation pathway with a simple normal PDF.</description><identifier>ISSN: 2057-1976</identifier><identifier>EISSN: 2057-1976</identifier><identifier>DOI: 10.1088/2057-1976/aa6bff</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>autonomic nervous system ; cardiac pacemaker ; detrended fluctuation analysis ; heart models ; ionic channels ; scale exponent ; sinoatrial node cell</subject><ispartof>Biomedical physics &amp; engineering express, 2017-05, Vol.3 (3), p.35009</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c242t-757697505783af4ce284845dff4dac881300ea5699bd18cc95a7221190c86df73</citedby><cites>FETCH-LOGICAL-c242t-757697505783af4ce284845dff4dac881300ea5699bd18cc95a7221190c86df73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Castellanos, N P</creatorcontrib><creatorcontrib>Godinez, R</creatorcontrib><title>Simulating the extrinsic regulation of the sinoatrial node cells using a unified computational model</title><title>Biomedical physics &amp; engineering express</title><addtitle>BPEX</addtitle><addtitle>Biomed. Phys. Eng. Express</addtitle><description>The aim of this work is to develop a computational model to study the extrinsic regulation of the heart rate variability (HRV) during sympathetic and/or vagal stimulation. The model here proposed is based on two recent models of the sinoatrial node cell (SANC) action potential and the influence of the autonomic nervous system (ANS) on the activity of ionic channels of SANCs. The HRV was simulated by applying a random frequency stimulation using both a normal and a beta probability density function (PDF) for different ranges of stimulation frequencies. The HRV was then analyzed by computing the scale exponent using detrended fluctuation analysis. We found that our model reproduces the value of the scale exponent observed in healthy humans ( = 1.07 0.05) when simultaneous vagal and sympathetic stimulus (with beta and normal PDFs, respectively) over the frequency range from 0 to 10 Hz are applied. Our model also predicts a Brownian motion behavior when the muscarinic receptors are blocked ( = 1.8) and the white noise behavior when the b-adrenergic receptors are blocked ( = 0.5). Our results shed light on how the ANS regulates the HRV in healthy conditions, where it is not enough to consider only one stimulation pathway with a simple normal PDF.</description><subject>autonomic nervous system</subject><subject>cardiac pacemaker</subject><subject>detrended fluctuation analysis</subject><subject>heart models</subject><subject>ionic channels</subject><subject>scale exponent</subject><subject>sinoatrial node cell</subject><issn>2057-1976</issn><issn>2057-1976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMoWGrvHnPz4toku_k6SlErFDyo55Dmo6bsbpbNLtT_3mwr4kFkDjPM-71heABcY3SHkRBLgigvsORsqTXben8GZj-r81_zJViktEcIYUYYk3QG7GtoxloPod3B4cNBdxj60KZgYO92RyG2MPqjlkIbdZZ1DdtoHTSurhMc0-TVcGyDD85CE5tuHI7GDDYZrK_Ahdd1covvPgfvjw9vq3WxeXl6Xt1vCkMqMhScciY5zc-KUvvKOCIqUVHrfWW1EQKXCDlNmZRbi4UxkmpOCMYSGcGs5-UcoNNd08eUeudV14dG958KIzUFpaYk1JSEOgWVLbcnS4id2sexz0-n__CbP_Bt5w6qzIVKipBUnfXlF5NbeYA</recordid><startdate>20170510</startdate><enddate>20170510</enddate><creator>Castellanos, N P</creator><creator>Godinez, R</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170510</creationdate><title>Simulating the extrinsic regulation of the sinoatrial node cells using a unified computational model</title><author>Castellanos, N P ; Godinez, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-757697505783af4ce284845dff4dac881300ea5699bd18cc95a7221190c86df73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>autonomic nervous system</topic><topic>cardiac pacemaker</topic><topic>detrended fluctuation analysis</topic><topic>heart models</topic><topic>ionic channels</topic><topic>scale exponent</topic><topic>sinoatrial node cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castellanos, N P</creatorcontrib><creatorcontrib>Godinez, R</creatorcontrib><collection>CrossRef</collection><jtitle>Biomedical physics &amp; engineering express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castellanos, N P</au><au>Godinez, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulating the extrinsic regulation of the sinoatrial node cells using a unified computational model</atitle><jtitle>Biomedical physics &amp; engineering express</jtitle><stitle>BPEX</stitle><addtitle>Biomed. Phys. Eng. Express</addtitle><date>2017-05-10</date><risdate>2017</risdate><volume>3</volume><issue>3</issue><spage>35009</spage><pages>35009-</pages><issn>2057-1976</issn><eissn>2057-1976</eissn><coden>NJOPFM</coden><abstract>The aim of this work is to develop a computational model to study the extrinsic regulation of the heart rate variability (HRV) during sympathetic and/or vagal stimulation. The model here proposed is based on two recent models of the sinoatrial node cell (SANC) action potential and the influence of the autonomic nervous system (ANS) on the activity of ionic channels of SANCs. The HRV was simulated by applying a random frequency stimulation using both a normal and a beta probability density function (PDF) for different ranges of stimulation frequencies. The HRV was then analyzed by computing the scale exponent using detrended fluctuation analysis. We found that our model reproduces the value of the scale exponent observed in healthy humans ( = 1.07 0.05) when simultaneous vagal and sympathetic stimulus (with beta and normal PDFs, respectively) over the frequency range from 0 to 10 Hz are applied. Our model also predicts a Brownian motion behavior when the muscarinic receptors are blocked ( = 1.8) and the white noise behavior when the b-adrenergic receptors are blocked ( = 0.5). Our results shed light on how the ANS regulates the HRV in healthy conditions, where it is not enough to consider only one stimulation pathway with a simple normal PDF.</abstract><pub>IOP Publishing</pub><doi>10.1088/2057-1976/aa6bff</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2057-1976
ispartof Biomedical physics & engineering express, 2017-05, Vol.3 (3), p.35009
issn 2057-1976
2057-1976
language eng
recordid cdi_crossref_primary_10_1088_2057_1976_aa6bff
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects autonomic nervous system
cardiac pacemaker
detrended fluctuation analysis
heart models
ionic channels
scale exponent
sinoatrial node cell
title Simulating the extrinsic regulation of the sinoatrial node cells using a unified computational model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A26%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulating%20the%20extrinsic%20regulation%20of%20the%20sinoatrial%20node%20cells%20using%20a%20unified%20computational%20model&rft.jtitle=Biomedical%20physics%20&%20engineering%20express&rft.au=Castellanos,%20N%20P&rft.date=2017-05-10&rft.volume=3&rft.issue=3&rft.spage=35009&rft.pages=35009-&rft.issn=2057-1976&rft.eissn=2057-1976&rft.coden=NJOPFM&rft_id=info:doi/10.1088/2057-1976/aa6bff&rft_dat=%3Ciop_cross%3Ebpexaa6bff%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c242t-757697505783af4ce284845dff4dac881300ea5699bd18cc95a7221190c86df73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true