Loading…

Anode ink formulation for a fully printed flexible fuel cell stack

In fuel cells the underlying reactions take place at the catalyst layers composed of materials favoring the desired electrochemical reactions. This paper introduces a formulation process for a catalyst inkjet ink used as an anode for a fully printed flexible fuel cell stack. The optimal ink formulat...

Full description

Saved in:
Bibliographic Details
Published in:Flexible and printed electronics 2020-06, Vol.5 (2), p.25002
Main Authors: Hakola, Liisa, Parra Puerto, Andres, Vaari, Anu, Maaninen, Tiina, Kucernak, Anthony, Viik, Saara, Smolander, Maria
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c322t-1e057a323298a394aa1e3bb061d9e5ba13aa58cea6fc4f4820680663a1f6eded3
cites cdi_FETCH-LOGICAL-c322t-1e057a323298a394aa1e3bb061d9e5ba13aa58cea6fc4f4820680663a1f6eded3
container_end_page
container_issue 2
container_start_page 25002
container_title Flexible and printed electronics
container_volume 5
creator Hakola, Liisa
Parra Puerto, Andres
Vaari, Anu
Maaninen, Tiina
Kucernak, Anthony
Viik, Saara
Smolander, Maria
description In fuel cells the underlying reactions take place at the catalyst layers composed of materials favoring the desired electrochemical reactions. This paper introduces a formulation process for a catalyst inkjet ink used as an anode for a fully printed flexible fuel cell stack. The optimal ink formulation was 2.5 wt% of carbon-platinum-ruthenium mixture with 0.5% Nafion concentration in a diacetone alcohol solvent vehicle. The best jetting performance was achieved when 1 wt% binder was included in the ink formulation. Anodes with resistivity of approximately 0.1 Ω cm were inkjet printed, which is close to the commercial anode resistivity of 0.05 Ω cm. The anodes were used in fuel cell stacks that were prepared by utilizing only printing methods. The best five-cell-air-breathing stack showed an open circuit potential under H2/air conditions of 3.4 V. The peak power of this stack was 120 µW cm−2 at 1.75 V, with a resistance obtained from potentiostatic impedance analysis of 295 Ohm cm2. The printed electrodes showed a performance suitable for low-performance solutions, such as powering single-use sensors.
doi_str_mv 10.1088/2058-8585/ab7e16
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2058_8585_ab7e16</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>fpeab7e16</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-1e057a323298a394aa1e3bb061d9e5ba13aa58cea6fc4f4820680663a1f6eded3</originalsourceid><addsrcrecordid>eNp1UMFKw0AUXETBUnv3uB9g7Ntsstkca1ErFLzoeXnZvIW022zZJGD_3oSIePH0hmHmMTOM3Qt4FKD1OoVcJzrX-RqrgoS6Yotf6voPvmWrrjsAgCjLQmpYsKdNG2riTXvkLsTT4LFvQjthjtwN3l_4OTZtTzV3nr6aytNIk-eWvOddj_Z4x24c-o5WP3fJPl-eP7a7ZP_--rbd7BMr07RPBEFeoExlWmqUZYYoSFYVKFGXlFcoJGKuLaFyNnOZTkFpUEqicIpqquWSwfzXxtB1kZwZk50wXowAM81gpp5m6mnmGUbLw2xpwtkcwhDbMeD_8m_Q1V5O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Anode ink formulation for a fully printed flexible fuel cell stack</title><source>Institute of Physics</source><creator>Hakola, Liisa ; Parra Puerto, Andres ; Vaari, Anu ; Maaninen, Tiina ; Kucernak, Anthony ; Viik, Saara ; Smolander, Maria</creator><creatorcontrib>Hakola, Liisa ; Parra Puerto, Andres ; Vaari, Anu ; Maaninen, Tiina ; Kucernak, Anthony ; Viik, Saara ; Smolander, Maria</creatorcontrib><description>In fuel cells the underlying reactions take place at the catalyst layers composed of materials favoring the desired electrochemical reactions. This paper introduces a formulation process for a catalyst inkjet ink used as an anode for a fully printed flexible fuel cell stack. The optimal ink formulation was 2.5 wt% of carbon-platinum-ruthenium mixture with 0.5% Nafion concentration in a diacetone alcohol solvent vehicle. The best jetting performance was achieved when 1 wt% binder was included in the ink formulation. Anodes with resistivity of approximately 0.1 Ω cm were inkjet printed, which is close to the commercial anode resistivity of 0.05 Ω cm. The anodes were used in fuel cell stacks that were prepared by utilizing only printing methods. The best five-cell-air-breathing stack showed an open circuit potential under H2/air conditions of 3.4 V. The peak power of this stack was 120 µW cm−2 at 1.75 V, with a resistance obtained from potentiostatic impedance analysis of 295 Ohm cm2. The printed electrodes showed a performance suitable for low-performance solutions, such as powering single-use sensors.</description><identifier>ISSN: 2058-8585</identifier><identifier>EISSN: 2058-8585</identifier><identifier>DOI: 10.1088/2058-8585/ab7e16</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>anode ; catalyst ; flexible ; formulation ; fuel cell ; ink ; inkjet ; print ; stack</subject><ispartof>Flexible and printed electronics, 2020-06, Vol.5 (2), p.25002</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-1e057a323298a394aa1e3bb061d9e5ba13aa58cea6fc4f4820680663a1f6eded3</citedby><cites>FETCH-LOGICAL-c322t-1e057a323298a394aa1e3bb061d9e5ba13aa58cea6fc4f4820680663a1f6eded3</cites><orcidid>0000-0002-1131-1168 ; 0000-0002-5790-9683 ; 0000-0002-8394-6277</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hakola, Liisa</creatorcontrib><creatorcontrib>Parra Puerto, Andres</creatorcontrib><creatorcontrib>Vaari, Anu</creatorcontrib><creatorcontrib>Maaninen, Tiina</creatorcontrib><creatorcontrib>Kucernak, Anthony</creatorcontrib><creatorcontrib>Viik, Saara</creatorcontrib><creatorcontrib>Smolander, Maria</creatorcontrib><title>Anode ink formulation for a fully printed flexible fuel cell stack</title><title>Flexible and printed electronics</title><addtitle>FPE</addtitle><addtitle>Flex. Print. Electron</addtitle><description>In fuel cells the underlying reactions take place at the catalyst layers composed of materials favoring the desired electrochemical reactions. This paper introduces a formulation process for a catalyst inkjet ink used as an anode for a fully printed flexible fuel cell stack. The optimal ink formulation was 2.5 wt% of carbon-platinum-ruthenium mixture with 0.5% Nafion concentration in a diacetone alcohol solvent vehicle. The best jetting performance was achieved when 1 wt% binder was included in the ink formulation. Anodes with resistivity of approximately 0.1 Ω cm were inkjet printed, which is close to the commercial anode resistivity of 0.05 Ω cm. The anodes were used in fuel cell stacks that were prepared by utilizing only printing methods. The best five-cell-air-breathing stack showed an open circuit potential under H2/air conditions of 3.4 V. The peak power of this stack was 120 µW cm−2 at 1.75 V, with a resistance obtained from potentiostatic impedance analysis of 295 Ohm cm2. The printed electrodes showed a performance suitable for low-performance solutions, such as powering single-use sensors.</description><subject>anode</subject><subject>catalyst</subject><subject>flexible</subject><subject>formulation</subject><subject>fuel cell</subject><subject>ink</subject><subject>inkjet</subject><subject>print</subject><subject>stack</subject><issn>2058-8585</issn><issn>2058-8585</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UMFKw0AUXETBUnv3uB9g7Ntsstkca1ErFLzoeXnZvIW022zZJGD_3oSIePH0hmHmMTOM3Qt4FKD1OoVcJzrX-RqrgoS6Yotf6voPvmWrrjsAgCjLQmpYsKdNG2riTXvkLsTT4LFvQjthjtwN3l_4OTZtTzV3nr6aytNIk-eWvOddj_Z4x24c-o5WP3fJPl-eP7a7ZP_--rbd7BMr07RPBEFeoExlWmqUZYYoSFYVKFGXlFcoJGKuLaFyNnOZTkFpUEqicIpqquWSwfzXxtB1kZwZk50wXowAM81gpp5m6mnmGUbLw2xpwtkcwhDbMeD_8m_Q1V5O</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Hakola, Liisa</creator><creator>Parra Puerto, Andres</creator><creator>Vaari, Anu</creator><creator>Maaninen, Tiina</creator><creator>Kucernak, Anthony</creator><creator>Viik, Saara</creator><creator>Smolander, Maria</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1131-1168</orcidid><orcidid>https://orcid.org/0000-0002-5790-9683</orcidid><orcidid>https://orcid.org/0000-0002-8394-6277</orcidid></search><sort><creationdate>20200601</creationdate><title>Anode ink formulation for a fully printed flexible fuel cell stack</title><author>Hakola, Liisa ; Parra Puerto, Andres ; Vaari, Anu ; Maaninen, Tiina ; Kucernak, Anthony ; Viik, Saara ; Smolander, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-1e057a323298a394aa1e3bb061d9e5ba13aa58cea6fc4f4820680663a1f6eded3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>anode</topic><topic>catalyst</topic><topic>flexible</topic><topic>formulation</topic><topic>fuel cell</topic><topic>ink</topic><topic>inkjet</topic><topic>print</topic><topic>stack</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hakola, Liisa</creatorcontrib><creatorcontrib>Parra Puerto, Andres</creatorcontrib><creatorcontrib>Vaari, Anu</creatorcontrib><creatorcontrib>Maaninen, Tiina</creatorcontrib><creatorcontrib>Kucernak, Anthony</creatorcontrib><creatorcontrib>Viik, Saara</creatorcontrib><creatorcontrib>Smolander, Maria</creatorcontrib><collection>IOP Publishing</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Flexible and printed electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hakola, Liisa</au><au>Parra Puerto, Andres</au><au>Vaari, Anu</au><au>Maaninen, Tiina</au><au>Kucernak, Anthony</au><au>Viik, Saara</au><au>Smolander, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anode ink formulation for a fully printed flexible fuel cell stack</atitle><jtitle>Flexible and printed electronics</jtitle><stitle>FPE</stitle><addtitle>Flex. Print. Electron</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>5</volume><issue>2</issue><spage>25002</spage><pages>25002-</pages><issn>2058-8585</issn><eissn>2058-8585</eissn><abstract>In fuel cells the underlying reactions take place at the catalyst layers composed of materials favoring the desired electrochemical reactions. This paper introduces a formulation process for a catalyst inkjet ink used as an anode for a fully printed flexible fuel cell stack. The optimal ink formulation was 2.5 wt% of carbon-platinum-ruthenium mixture with 0.5% Nafion concentration in a diacetone alcohol solvent vehicle. The best jetting performance was achieved when 1 wt% binder was included in the ink formulation. Anodes with resistivity of approximately 0.1 Ω cm were inkjet printed, which is close to the commercial anode resistivity of 0.05 Ω cm. The anodes were used in fuel cell stacks that were prepared by utilizing only printing methods. The best five-cell-air-breathing stack showed an open circuit potential under H2/air conditions of 3.4 V. The peak power of this stack was 120 µW cm−2 at 1.75 V, with a resistance obtained from potentiostatic impedance analysis of 295 Ohm cm2. The printed electrodes showed a performance suitable for low-performance solutions, such as powering single-use sensors.</abstract><pub>IOP Publishing</pub><doi>10.1088/2058-8585/ab7e16</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1131-1168</orcidid><orcidid>https://orcid.org/0000-0002-5790-9683</orcidid><orcidid>https://orcid.org/0000-0002-8394-6277</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2058-8585
ispartof Flexible and printed electronics, 2020-06, Vol.5 (2), p.25002
issn 2058-8585
2058-8585
language eng
recordid cdi_crossref_primary_10_1088_2058_8585_ab7e16
source Institute of Physics
subjects anode
catalyst
flexible
formulation
fuel cell
ink
inkjet
print
stack
title Anode ink formulation for a fully printed flexible fuel cell stack
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A26%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anode%20ink%20formulation%20for%20a%20fully%20printed%20flexible%20fuel%20cell%20stack&rft.jtitle=Flexible%20and%20printed%20electronics&rft.au=Hakola,%20Liisa&rft.date=2020-06-01&rft.volume=5&rft.issue=2&rft.spage=25002&rft.pages=25002-&rft.issn=2058-8585&rft.eissn=2058-8585&rft_id=info:doi/10.1088/2058-8585/ab7e16&rft_dat=%3Ciop_cross%3Efpeab7e16%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-1e057a323298a394aa1e3bb061d9e5ba13aa58cea6fc4f4820680663a1f6eded3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true