Loading…
Anode ink formulation for a fully printed flexible fuel cell stack
In fuel cells the underlying reactions take place at the catalyst layers composed of materials favoring the desired electrochemical reactions. This paper introduces a formulation process for a catalyst inkjet ink used as an anode for a fully printed flexible fuel cell stack. The optimal ink formulat...
Saved in:
Published in: | Flexible and printed electronics 2020-06, Vol.5 (2), p.25002 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c322t-1e057a323298a394aa1e3bb061d9e5ba13aa58cea6fc4f4820680663a1f6eded3 |
---|---|
cites | cdi_FETCH-LOGICAL-c322t-1e057a323298a394aa1e3bb061d9e5ba13aa58cea6fc4f4820680663a1f6eded3 |
container_end_page | |
container_issue | 2 |
container_start_page | 25002 |
container_title | Flexible and printed electronics |
container_volume | 5 |
creator | Hakola, Liisa Parra Puerto, Andres Vaari, Anu Maaninen, Tiina Kucernak, Anthony Viik, Saara Smolander, Maria |
description | In fuel cells the underlying reactions take place at the catalyst layers composed of materials favoring the desired electrochemical reactions. This paper introduces a formulation process for a catalyst inkjet ink used as an anode for a fully printed flexible fuel cell stack. The optimal ink formulation was 2.5 wt% of carbon-platinum-ruthenium mixture with 0.5% Nafion concentration in a diacetone alcohol solvent vehicle. The best jetting performance was achieved when 1 wt% binder was included in the ink formulation. Anodes with resistivity of approximately 0.1 Ω cm were inkjet printed, which is close to the commercial anode resistivity of 0.05 Ω cm. The anodes were used in fuel cell stacks that were prepared by utilizing only printing methods. The best five-cell-air-breathing stack showed an open circuit potential under H2/air conditions of 3.4 V. The peak power of this stack was 120 µW cm−2 at 1.75 V, with a resistance obtained from potentiostatic impedance analysis of 295 Ohm cm2. The printed electrodes showed a performance suitable for low-performance solutions, such as powering single-use sensors. |
doi_str_mv | 10.1088/2058-8585/ab7e16 |
format | article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2058_8585_ab7e16</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>fpeab7e16</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-1e057a323298a394aa1e3bb061d9e5ba13aa58cea6fc4f4820680663a1f6eded3</originalsourceid><addsrcrecordid>eNp1UMFKw0AUXETBUnv3uB9g7Ntsstkca1ErFLzoeXnZvIW022zZJGD_3oSIePH0hmHmMTOM3Qt4FKD1OoVcJzrX-RqrgoS6Yotf6voPvmWrrjsAgCjLQmpYsKdNG2riTXvkLsTT4LFvQjthjtwN3l_4OTZtTzV3nr6aytNIk-eWvOddj_Z4x24c-o5WP3fJPl-eP7a7ZP_--rbd7BMr07RPBEFeoExlWmqUZYYoSFYVKFGXlFcoJGKuLaFyNnOZTkFpUEqicIpqquWSwfzXxtB1kZwZk50wXowAM81gpp5m6mnmGUbLw2xpwtkcwhDbMeD_8m_Q1V5O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Anode ink formulation for a fully printed flexible fuel cell stack</title><source>Institute of Physics</source><creator>Hakola, Liisa ; Parra Puerto, Andres ; Vaari, Anu ; Maaninen, Tiina ; Kucernak, Anthony ; Viik, Saara ; Smolander, Maria</creator><creatorcontrib>Hakola, Liisa ; Parra Puerto, Andres ; Vaari, Anu ; Maaninen, Tiina ; Kucernak, Anthony ; Viik, Saara ; Smolander, Maria</creatorcontrib><description>In fuel cells the underlying reactions take place at the catalyst layers composed of materials favoring the desired electrochemical reactions. This paper introduces a formulation process for a catalyst inkjet ink used as an anode for a fully printed flexible fuel cell stack. The optimal ink formulation was 2.5 wt% of carbon-platinum-ruthenium mixture with 0.5% Nafion concentration in a diacetone alcohol solvent vehicle. The best jetting performance was achieved when 1 wt% binder was included in the ink formulation. Anodes with resistivity of approximately 0.1 Ω cm were inkjet printed, which is close to the commercial anode resistivity of 0.05 Ω cm. The anodes were used in fuel cell stacks that were prepared by utilizing only printing methods. The best five-cell-air-breathing stack showed an open circuit potential under H2/air conditions of 3.4 V. The peak power of this stack was 120 µW cm−2 at 1.75 V, with a resistance obtained from potentiostatic impedance analysis of 295 Ohm cm2. The printed electrodes showed a performance suitable for low-performance solutions, such as powering single-use sensors.</description><identifier>ISSN: 2058-8585</identifier><identifier>EISSN: 2058-8585</identifier><identifier>DOI: 10.1088/2058-8585/ab7e16</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>anode ; catalyst ; flexible ; formulation ; fuel cell ; ink ; inkjet ; print ; stack</subject><ispartof>Flexible and printed electronics, 2020-06, Vol.5 (2), p.25002</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-1e057a323298a394aa1e3bb061d9e5ba13aa58cea6fc4f4820680663a1f6eded3</citedby><cites>FETCH-LOGICAL-c322t-1e057a323298a394aa1e3bb061d9e5ba13aa58cea6fc4f4820680663a1f6eded3</cites><orcidid>0000-0002-1131-1168 ; 0000-0002-5790-9683 ; 0000-0002-8394-6277</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hakola, Liisa</creatorcontrib><creatorcontrib>Parra Puerto, Andres</creatorcontrib><creatorcontrib>Vaari, Anu</creatorcontrib><creatorcontrib>Maaninen, Tiina</creatorcontrib><creatorcontrib>Kucernak, Anthony</creatorcontrib><creatorcontrib>Viik, Saara</creatorcontrib><creatorcontrib>Smolander, Maria</creatorcontrib><title>Anode ink formulation for a fully printed flexible fuel cell stack</title><title>Flexible and printed electronics</title><addtitle>FPE</addtitle><addtitle>Flex. Print. Electron</addtitle><description>In fuel cells the underlying reactions take place at the catalyst layers composed of materials favoring the desired electrochemical reactions. This paper introduces a formulation process for a catalyst inkjet ink used as an anode for a fully printed flexible fuel cell stack. The optimal ink formulation was 2.5 wt% of carbon-platinum-ruthenium mixture with 0.5% Nafion concentration in a diacetone alcohol solvent vehicle. The best jetting performance was achieved when 1 wt% binder was included in the ink formulation. Anodes with resistivity of approximately 0.1 Ω cm were inkjet printed, which is close to the commercial anode resistivity of 0.05 Ω cm. The anodes were used in fuel cell stacks that were prepared by utilizing only printing methods. The best five-cell-air-breathing stack showed an open circuit potential under H2/air conditions of 3.4 V. The peak power of this stack was 120 µW cm−2 at 1.75 V, with a resistance obtained from potentiostatic impedance analysis of 295 Ohm cm2. The printed electrodes showed a performance suitable for low-performance solutions, such as powering single-use sensors.</description><subject>anode</subject><subject>catalyst</subject><subject>flexible</subject><subject>formulation</subject><subject>fuel cell</subject><subject>ink</subject><subject>inkjet</subject><subject>print</subject><subject>stack</subject><issn>2058-8585</issn><issn>2058-8585</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UMFKw0AUXETBUnv3uB9g7Ntsstkca1ErFLzoeXnZvIW022zZJGD_3oSIePH0hmHmMTOM3Qt4FKD1OoVcJzrX-RqrgoS6Yotf6voPvmWrrjsAgCjLQmpYsKdNG2riTXvkLsTT4LFvQjthjtwN3l_4OTZtTzV3nr6aytNIk-eWvOddj_Z4x24c-o5WP3fJPl-eP7a7ZP_--rbd7BMr07RPBEFeoExlWmqUZYYoSFYVKFGXlFcoJGKuLaFyNnOZTkFpUEqicIpqquWSwfzXxtB1kZwZk50wXowAM81gpp5m6mnmGUbLw2xpwtkcwhDbMeD_8m_Q1V5O</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Hakola, Liisa</creator><creator>Parra Puerto, Andres</creator><creator>Vaari, Anu</creator><creator>Maaninen, Tiina</creator><creator>Kucernak, Anthony</creator><creator>Viik, Saara</creator><creator>Smolander, Maria</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1131-1168</orcidid><orcidid>https://orcid.org/0000-0002-5790-9683</orcidid><orcidid>https://orcid.org/0000-0002-8394-6277</orcidid></search><sort><creationdate>20200601</creationdate><title>Anode ink formulation for a fully printed flexible fuel cell stack</title><author>Hakola, Liisa ; Parra Puerto, Andres ; Vaari, Anu ; Maaninen, Tiina ; Kucernak, Anthony ; Viik, Saara ; Smolander, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-1e057a323298a394aa1e3bb061d9e5ba13aa58cea6fc4f4820680663a1f6eded3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>anode</topic><topic>catalyst</topic><topic>flexible</topic><topic>formulation</topic><topic>fuel cell</topic><topic>ink</topic><topic>inkjet</topic><topic>print</topic><topic>stack</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hakola, Liisa</creatorcontrib><creatorcontrib>Parra Puerto, Andres</creatorcontrib><creatorcontrib>Vaari, Anu</creatorcontrib><creatorcontrib>Maaninen, Tiina</creatorcontrib><creatorcontrib>Kucernak, Anthony</creatorcontrib><creatorcontrib>Viik, Saara</creatorcontrib><creatorcontrib>Smolander, Maria</creatorcontrib><collection>IOP Publishing</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Flexible and printed electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hakola, Liisa</au><au>Parra Puerto, Andres</au><au>Vaari, Anu</au><au>Maaninen, Tiina</au><au>Kucernak, Anthony</au><au>Viik, Saara</au><au>Smolander, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anode ink formulation for a fully printed flexible fuel cell stack</atitle><jtitle>Flexible and printed electronics</jtitle><stitle>FPE</stitle><addtitle>Flex. Print. Electron</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>5</volume><issue>2</issue><spage>25002</spage><pages>25002-</pages><issn>2058-8585</issn><eissn>2058-8585</eissn><abstract>In fuel cells the underlying reactions take place at the catalyst layers composed of materials favoring the desired electrochemical reactions. This paper introduces a formulation process for a catalyst inkjet ink used as an anode for a fully printed flexible fuel cell stack. The optimal ink formulation was 2.5 wt% of carbon-platinum-ruthenium mixture with 0.5% Nafion concentration in a diacetone alcohol solvent vehicle. The best jetting performance was achieved when 1 wt% binder was included in the ink formulation. Anodes with resistivity of approximately 0.1 Ω cm were inkjet printed, which is close to the commercial anode resistivity of 0.05 Ω cm. The anodes were used in fuel cell stacks that were prepared by utilizing only printing methods. The best five-cell-air-breathing stack showed an open circuit potential under H2/air conditions of 3.4 V. The peak power of this stack was 120 µW cm−2 at 1.75 V, with a resistance obtained from potentiostatic impedance analysis of 295 Ohm cm2. The printed electrodes showed a performance suitable for low-performance solutions, such as powering single-use sensors.</abstract><pub>IOP Publishing</pub><doi>10.1088/2058-8585/ab7e16</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1131-1168</orcidid><orcidid>https://orcid.org/0000-0002-5790-9683</orcidid><orcidid>https://orcid.org/0000-0002-8394-6277</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2058-8585 |
ispartof | Flexible and printed electronics, 2020-06, Vol.5 (2), p.25002 |
issn | 2058-8585 2058-8585 |
language | eng |
recordid | cdi_crossref_primary_10_1088_2058_8585_ab7e16 |
source | Institute of Physics |
subjects | anode catalyst flexible formulation fuel cell ink inkjet stack |
title | Anode ink formulation for a fully printed flexible fuel cell stack |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A26%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anode%20ink%20formulation%20for%20a%20fully%20printed%20flexible%20fuel%20cell%20stack&rft.jtitle=Flexible%20and%20printed%20electronics&rft.au=Hakola,%20Liisa&rft.date=2020-06-01&rft.volume=5&rft.issue=2&rft.spage=25002&rft.pages=25002-&rft.issn=2058-8585&rft.eissn=2058-8585&rft_id=info:doi/10.1088/2058-8585/ab7e16&rft_dat=%3Ciop_cross%3Efpeab7e16%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-1e057a323298a394aa1e3bb061d9e5ba13aa58cea6fc4f4820680663a1f6eded3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |