Loading…
TEQUILA: a platform for rapid development of quantum algorithms
Variational quantum algorithms are currently the most promising class of algorithms for deployment on near-term quantum computers. In contrast to classical algorithms, there are almost no standardized methods in quantum algorithmic development yet, and the field continues to evolve rapidly. As in cl...
Saved in:
Published in: | Quantum science and technology 2021-04, Vol.6 (2), p.24009 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Variational quantum algorithms are currently the most promising class of algorithms for deployment on near-term quantum computers. In contrast to classical algorithms, there are almost no standardized methods in quantum algorithmic development yet, and the field continues to evolve rapidly. As in classical computing, heuristics play a crucial role in the development of new quantum algorithms, resulting in a high demand for flexible and reliable ways to implement, test, and share new ideas. Inspired by this demand, we introduce tequila, a development package for quantum algorithms in python, designed for fast and flexible implementation, prototyping and deployment of novel quantum algorithms in electronic structure and other fields. tequila operates with abstract expectation values which can be combined, transformed, differentiated, and optimized. On evaluation, the abstract data structures are compiled to run on state of the art quantum simulators or interfaces. |
---|---|
ISSN: | 2058-9565 2058-9565 |
DOI: | 10.1088/2058-9565/abe567 |