Loading…
Nonuniformly twisted states and traveling chimeras in a system of nonlocally coupled identical phase oscillators
We explore the model of a population of nonlocally coupled identical phase oscillators on a ring (Abrams and Strogatz 2004 Phys. Rev. Lett. 93 174102) and describe traveling patterns. In the continuous in space formulation, we find families of traveling wave solutions for left-right symmetric and as...
Saved in:
Published in: | Journal of physic, complexity complexity, 2024-03, Vol.5 (1), p.15019 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c341t-1fe621727d8ae8a7665484c54616036fe426c7dfb359e087c06813a8caba5a743 |
container_end_page | |
container_issue | 1 |
container_start_page | 15019 |
container_title | Journal of physic, complexity |
container_volume | 5 |
creator | Smirnov, L A Bolotov, M I Pikovsky, A |
description | We explore the model of a population of nonlocally coupled identical phase oscillators on a ring (Abrams and Strogatz 2004
Phys. Rev. Lett.
93
174102) and describe traveling patterns. In the continuous in space formulation, we find families of traveling wave solutions for left-right symmetric and asymmetric couplings. Only the simplest of these waves are stable, which is confirmed by numerical simulations for a finite population. We demonstrate that for asymmetric coupling, a weakly turbulent traveling chimera regime is established, both from an initial standing chimera or an unstable traveling wave profile. The weakly turbulent chimera is a macroscopically chaotic state, with a well-defined synchronous domain and partial coherence in the disordered domain. We characterize it through the correlation function and the Lyapunov spectrum. |
doi_str_mv | 10.1088/2632-072X/ad2ec2 |
format | article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2632_072X_ad2ec2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2fc47dec02cf4b748993f886d4c05280</doaj_id><sourcerecordid>jpcomplexad2ec2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-1fe621727d8ae8a7665484c54616036fe426c7dfb359e087c06813a8caba5a743</originalsourceid><addsrcrecordid>eNp1UU1LAzEUXETBUnv3mB9gbZLNJulRil9Q9KLgLbzmo03JJkuyVfrv3VopXjy9xzAzvDdTVdcE3xIs5Yzymk6xoB8zMNRqelaNTtD5n_2ympSyxRhTIQhpyKjqXlLcRe9SbsMe9V--9Nag0kNvC4JoUJ_h0wYf10hvfGszFOQjAlT2A7NFyaGYYkgawqDXadeFQe-Njb0fMNRtoFiUivYhQJ9yuaouHIRiJ79zXL0_3L8tnqbL18fnxd1yqmtG-ilxllMiqDASrATBecMk0w3jhOOaO8so18K4Vd3MLZZCYy5JDVLDChoQrB5Xz0dfk2CruuxbyHuVwKsfIOW1gjzcGKyiTjNhrMZUO7YSTM7ntZOSG6ZxQyUevPDRS-dUSrbu5EewOhSgDgmrQ8LqWMAguTlKfOrUNu1yHJ79n_4NgaKJlA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonuniformly twisted states and traveling chimeras in a system of nonlocally coupled identical phase oscillators</title><source>EZB Electronic Journals Library</source><creator>Smirnov, L A ; Bolotov, M I ; Pikovsky, A</creator><creatorcontrib>Smirnov, L A ; Bolotov, M I ; Pikovsky, A</creatorcontrib><description>We explore the model of a population of nonlocally coupled identical phase oscillators on a ring (Abrams and Strogatz 2004
Phys. Rev. Lett.
93
174102) and describe traveling patterns. In the continuous in space formulation, we find families of traveling wave solutions for left-right symmetric and asymmetric couplings. Only the simplest of these waves are stable, which is confirmed by numerical simulations for a finite population. We demonstrate that for asymmetric coupling, a weakly turbulent traveling chimera regime is established, both from an initial standing chimera or an unstable traveling wave profile. The weakly turbulent chimera is a macroscopically chaotic state, with a well-defined synchronous domain and partial coherence in the disordered domain. We characterize it through the correlation function and the Lyapunov spectrum.</description><identifier>ISSN: 2632-072X</identifier><identifier>EISSN: 2632-072X</identifier><identifier>DOI: 10.1088/2632-072X/ad2ec2</identifier><identifier>CODEN: JPCOGQ</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>asymmetric coupling ; Lyapunov exponent ; nonlocal coupling ; phase oscillators ; traveling chimera ; twisted states</subject><ispartof>Journal of physic, complexity, 2024-03, Vol.5 (1), p.15019</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c341t-1fe621727d8ae8a7665484c54616036fe426c7dfb359e087c06813a8caba5a743</cites><orcidid>0000-0002-2293-6534 ; 0000-0001-9561-2357 ; 0000-0001-9682-7122</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Smirnov, L A</creatorcontrib><creatorcontrib>Bolotov, M I</creatorcontrib><creatorcontrib>Pikovsky, A</creatorcontrib><title>Nonuniformly twisted states and traveling chimeras in a system of nonlocally coupled identical phase oscillators</title><title>Journal of physic, complexity</title><addtitle>JPCOMPLEX</addtitle><addtitle>J. Phys. Complex</addtitle><description>We explore the model of a population of nonlocally coupled identical phase oscillators on a ring (Abrams and Strogatz 2004
Phys. Rev. Lett.
93
174102) and describe traveling patterns. In the continuous in space formulation, we find families of traveling wave solutions for left-right symmetric and asymmetric couplings. Only the simplest of these waves are stable, which is confirmed by numerical simulations for a finite population. We demonstrate that for asymmetric coupling, a weakly turbulent traveling chimera regime is established, both from an initial standing chimera or an unstable traveling wave profile. The weakly turbulent chimera is a macroscopically chaotic state, with a well-defined synchronous domain and partial coherence in the disordered domain. We characterize it through the correlation function and the Lyapunov spectrum.</description><subject>asymmetric coupling</subject><subject>Lyapunov exponent</subject><subject>nonlocal coupling</subject><subject>phase oscillators</subject><subject>traveling chimera</subject><subject>twisted states</subject><issn>2632-072X</issn><issn>2632-072X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp1UU1LAzEUXETBUnv3mB9gbZLNJulRil9Q9KLgLbzmo03JJkuyVfrv3VopXjy9xzAzvDdTVdcE3xIs5Yzymk6xoB8zMNRqelaNTtD5n_2ympSyxRhTIQhpyKjqXlLcRe9SbsMe9V--9Nag0kNvC4JoUJ_h0wYf10hvfGszFOQjAlT2A7NFyaGYYkgawqDXadeFQe-Njb0fMNRtoFiUivYhQJ9yuaouHIRiJ79zXL0_3L8tnqbL18fnxd1yqmtG-ilxllMiqDASrATBecMk0w3jhOOaO8so18K4Vd3MLZZCYy5JDVLDChoQrB5Xz0dfk2CruuxbyHuVwKsfIOW1gjzcGKyiTjNhrMZUO7YSTM7ntZOSG6ZxQyUevPDRS-dUSrbu5EewOhSgDgmrQ8LqWMAguTlKfOrUNu1yHJ79n_4NgaKJlA</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Smirnov, L A</creator><creator>Bolotov, M I</creator><creator>Pikovsky, A</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2293-6534</orcidid><orcidid>https://orcid.org/0000-0001-9561-2357</orcidid><orcidid>https://orcid.org/0000-0001-9682-7122</orcidid></search><sort><creationdate>20240301</creationdate><title>Nonuniformly twisted states and traveling chimeras in a system of nonlocally coupled identical phase oscillators</title><author>Smirnov, L A ; Bolotov, M I ; Pikovsky, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-1fe621727d8ae8a7665484c54616036fe426c7dfb359e087c06813a8caba5a743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>asymmetric coupling</topic><topic>Lyapunov exponent</topic><topic>nonlocal coupling</topic><topic>phase oscillators</topic><topic>traveling chimera</topic><topic>twisted states</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smirnov, L A</creatorcontrib><creatorcontrib>Bolotov, M I</creatorcontrib><creatorcontrib>Pikovsky, A</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of physic, complexity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smirnov, L A</au><au>Bolotov, M I</au><au>Pikovsky, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonuniformly twisted states and traveling chimeras in a system of nonlocally coupled identical phase oscillators</atitle><jtitle>Journal of physic, complexity</jtitle><stitle>JPCOMPLEX</stitle><addtitle>J. Phys. Complex</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>5</volume><issue>1</issue><spage>15019</spage><pages>15019-</pages><issn>2632-072X</issn><eissn>2632-072X</eissn><coden>JPCOGQ</coden><abstract>We explore the model of a population of nonlocally coupled identical phase oscillators on a ring (Abrams and Strogatz 2004
Phys. Rev. Lett.
93
174102) and describe traveling patterns. In the continuous in space formulation, we find families of traveling wave solutions for left-right symmetric and asymmetric couplings. Only the simplest of these waves are stable, which is confirmed by numerical simulations for a finite population. We demonstrate that for asymmetric coupling, a weakly turbulent traveling chimera regime is established, both from an initial standing chimera or an unstable traveling wave profile. The weakly turbulent chimera is a macroscopically chaotic state, with a well-defined synchronous domain and partial coherence in the disordered domain. We characterize it through the correlation function and the Lyapunov spectrum.</abstract><pub>IOP Publishing</pub><doi>10.1088/2632-072X/ad2ec2</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-2293-6534</orcidid><orcidid>https://orcid.org/0000-0001-9561-2357</orcidid><orcidid>https://orcid.org/0000-0001-9682-7122</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2632-072X |
ispartof | Journal of physic, complexity, 2024-03, Vol.5 (1), p.15019 |
issn | 2632-072X 2632-072X |
language | eng |
recordid | cdi_crossref_primary_10_1088_2632_072X_ad2ec2 |
source | EZB Electronic Journals Library |
subjects | asymmetric coupling Lyapunov exponent nonlocal coupling phase oscillators traveling chimera twisted states |
title | Nonuniformly twisted states and traveling chimeras in a system of nonlocally coupled identical phase oscillators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A04%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonuniformly%20twisted%20states%20and%20traveling%20chimeras%20in%20a%20system%20of%20nonlocally%20coupled%20identical%20phase%20oscillators&rft.jtitle=Journal%20of%20physic,%20complexity&rft.au=Smirnov,%20L%20A&rft.date=2024-03-01&rft.volume=5&rft.issue=1&rft.spage=15019&rft.pages=15019-&rft.issn=2632-072X&rft.eissn=2632-072X&rft.coden=JPCOGQ&rft_id=info:doi/10.1088/2632-072X/ad2ec2&rft_dat=%3Ciop_cross%3Ejpcomplexad2ec2%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c341t-1fe621727d8ae8a7665484c54616036fe426c7dfb359e087c06813a8caba5a743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |