Loading…
Improving model robustness to weight noise via consistency regularization
As an emerging computing architecture, the computing-in-memory (CIM) exhibits significant potential for energy efficiency and computing power in artificial intelligence applications. However, the intrinsic non-idealities of CIM devices, manifesting as random interference on the weights of neural net...
Saved in:
Published in: | Machine learning: science and technology 2024-09, Vol.5 (3), p.35065 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c299t-8adea69024b987c72ff97bce06c94f215ce622da83addaa35e765dc57642a5463 |
container_end_page | |
container_issue | 3 |
container_start_page | 35065 |
container_title | Machine learning: science and technology |
container_volume | 5 |
creator | Hou, Yaoqi Zhang, Qingtian Wang, Namin Wu, Huaqiang |
description | As an emerging computing architecture, the computing-in-memory (CIM) exhibits significant potential for energy efficiency and computing power in artificial intelligence applications. However, the intrinsic non-idealities of CIM devices, manifesting as random interference on the weights of neural network, may significantly impact the inference accuracy. In this paper, we propose a novel training algorithm designed to mitigate the impact of weight noise. The algorithm strategically minimizes cross-entropy loss while concurrently refining the feature representations in intermediate layers to emulate those of an ideal, noise-free network. This dual-objective approach not only preserves the accuracy of the neural network but also enhances its robustness against noise-induced degradation. Empirical validation across several benchmark datasets confirms that our algorithm sets a new benchmark for accuracy in CIM-enabled neural network applications. Compared to the most commonly used forward noise training methods, our approach yields approximately a 2% accuracy boost on the ResNet32 model with the CIFAR-10 dataset and a weight noise scale of 0.2, and achieves a minimum performance gain of 1% on ResNet18 with the ImageNet dataset under the same noise quantization conditions. |
doi_str_mv | 10.1088/2632-2153/ad734a |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2632_2153_ad734a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6e87f84a6f7f49f5aad8cad226196eb0</doaj_id><sourcerecordid>3100549225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-8adea69024b987c72ff97bce06c94f215ce622da83addaa35e765dc57642a5463</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhYMoWGr3LgNujZ3MK5mlFB-BghtdDzfziFPSTJ1JKvXXmxpRN67u5XLOuYcvSS5zdJOjslxiTnCGc0aWoAtC4SSZ_ZxO_-znySLGDUIIs5wwjGZJVW13we9d16Rbr02bBl8Pse9MjGnv03fjmtc-7byLJt07SJXvoou96dQhDaYZWgjuA3rnu4vkzEIbzeJ7zpOX-7vn1WO2fnqoVrfrTGEh-qwEbYALhGktykIV2FpR1MogrgS1Y0llOMYaSgJaAxBmCs60YgWnGBjlZJ5UU672sJG74LYQDtKDk18HHxoJoXeqNZKbsrAlBW4LS4VlALpUoDHmueCmRmPW1ZQ1MngbTOzlxg-hG-tLkiPEqMCYjSo0qVTwMQZjf77mSB75yyNgeQQsJ_6j5XqyOL_7zfxX_gmkH4bv</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100549225</pqid></control><display><type>article</type><title>Improving model robustness to weight noise via consistency regularization</title><source>Publicly Available Content Database</source><creator>Hou, Yaoqi ; Zhang, Qingtian ; Wang, Namin ; Wu, Huaqiang</creator><creatorcontrib>Hou, Yaoqi ; Zhang, Qingtian ; Wang, Namin ; Wu, Huaqiang</creatorcontrib><description>As an emerging computing architecture, the computing-in-memory (CIM) exhibits significant potential for energy efficiency and computing power in artificial intelligence applications. However, the intrinsic non-idealities of CIM devices, manifesting as random interference on the weights of neural network, may significantly impact the inference accuracy. In this paper, we propose a novel training algorithm designed to mitigate the impact of weight noise. The algorithm strategically minimizes cross-entropy loss while concurrently refining the feature representations in intermediate layers to emulate those of an ideal, noise-free network. This dual-objective approach not only preserves the accuracy of the neural network but also enhances its robustness against noise-induced degradation. Empirical validation across several benchmark datasets confirms that our algorithm sets a new benchmark for accuracy in CIM-enabled neural network applications. Compared to the most commonly used forward noise training methods, our approach yields approximately a 2% accuracy boost on the ResNet32 model with the CIFAR-10 dataset and a weight noise scale of 0.2, and achieves a minimum performance gain of 1% on ResNet18 with the ImageNet dataset under the same noise quantization conditions.</description><identifier>ISSN: 2632-2153</identifier><identifier>EISSN: 2632-2153</identifier><identifier>DOI: 10.1088/2632-2153/ad734a</identifier><identifier>CODEN: MLSTCK</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Benchmarks ; Computation ; computing in memory ; Datasets ; dual-objective optimization ; Entropy (Information theory) ; Neural networks ; parameter perturbation ; Regularization ; Robustness ; weight noise</subject><ispartof>Machine learning: science and technology, 2024-09, Vol.5 (3), p.35065</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><rights>2024 The Author(s). Published by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c299t-8adea69024b987c72ff97bce06c94f215ce622da83addaa35e765dc57642a5463</cites><orcidid>0000-0003-2732-3419 ; 0009-0007-1675-4973 ; 0009-0001-7777-2098</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3100549225?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Hou, Yaoqi</creatorcontrib><creatorcontrib>Zhang, Qingtian</creatorcontrib><creatorcontrib>Wang, Namin</creatorcontrib><creatorcontrib>Wu, Huaqiang</creatorcontrib><title>Improving model robustness to weight noise via consistency regularization</title><title>Machine learning: science and technology</title><addtitle>MLST</addtitle><addtitle>Mach. Learn.: Sci. Technol</addtitle><description>As an emerging computing architecture, the computing-in-memory (CIM) exhibits significant potential for energy efficiency and computing power in artificial intelligence applications. However, the intrinsic non-idealities of CIM devices, manifesting as random interference on the weights of neural network, may significantly impact the inference accuracy. In this paper, we propose a novel training algorithm designed to mitigate the impact of weight noise. The algorithm strategically minimizes cross-entropy loss while concurrently refining the feature representations in intermediate layers to emulate those of an ideal, noise-free network. This dual-objective approach not only preserves the accuracy of the neural network but also enhances its robustness against noise-induced degradation. Empirical validation across several benchmark datasets confirms that our algorithm sets a new benchmark for accuracy in CIM-enabled neural network applications. Compared to the most commonly used forward noise training methods, our approach yields approximately a 2% accuracy boost on the ResNet32 model with the CIFAR-10 dataset and a weight noise scale of 0.2, and achieves a minimum performance gain of 1% on ResNet18 with the ImageNet dataset under the same noise quantization conditions.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Benchmarks</subject><subject>Computation</subject><subject>computing in memory</subject><subject>Datasets</subject><subject>dual-objective optimization</subject><subject>Entropy (Information theory)</subject><subject>Neural networks</subject><subject>parameter perturbation</subject><subject>Regularization</subject><subject>Robustness</subject><subject>weight noise</subject><issn>2632-2153</issn><issn>2632-2153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kEtLw0AUhYMoWGr3LgNujZ3MK5mlFB-BghtdDzfziFPSTJ1JKvXXmxpRN67u5XLOuYcvSS5zdJOjslxiTnCGc0aWoAtC4SSZ_ZxO_-znySLGDUIIs5wwjGZJVW13we9d16Rbr02bBl8Pse9MjGnv03fjmtc-7byLJt07SJXvoou96dQhDaYZWgjuA3rnu4vkzEIbzeJ7zpOX-7vn1WO2fnqoVrfrTGEh-qwEbYALhGktykIV2FpR1MogrgS1Y0llOMYaSgJaAxBmCs60YgWnGBjlZJ5UU672sJG74LYQDtKDk18HHxoJoXeqNZKbsrAlBW4LS4VlALpUoDHmueCmRmPW1ZQ1MngbTOzlxg-hG-tLkiPEqMCYjSo0qVTwMQZjf77mSB75yyNgeQQsJ_6j5XqyOL_7zfxX_gmkH4bv</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Hou, Yaoqi</creator><creator>Zhang, Qingtian</creator><creator>Wang, Namin</creator><creator>Wu, Huaqiang</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2P</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2732-3419</orcidid><orcidid>https://orcid.org/0009-0007-1675-4973</orcidid><orcidid>https://orcid.org/0009-0001-7777-2098</orcidid></search><sort><creationdate>20240901</creationdate><title>Improving model robustness to weight noise via consistency regularization</title><author>Hou, Yaoqi ; Zhang, Qingtian ; Wang, Namin ; Wu, Huaqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-8adea69024b987c72ff97bce06c94f215ce622da83addaa35e765dc57642a5463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Benchmarks</topic><topic>Computation</topic><topic>computing in memory</topic><topic>Datasets</topic><topic>dual-objective optimization</topic><topic>Entropy (Information theory)</topic><topic>Neural networks</topic><topic>parameter perturbation</topic><topic>Regularization</topic><topic>Robustness</topic><topic>weight noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Yaoqi</creatorcontrib><creatorcontrib>Zhang, Qingtian</creatorcontrib><creatorcontrib>Wang, Namin</creatorcontrib><creatorcontrib>Wu, Huaqiang</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Machine learning: science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Yaoqi</au><au>Zhang, Qingtian</au><au>Wang, Namin</au><au>Wu, Huaqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving model robustness to weight noise via consistency regularization</atitle><jtitle>Machine learning: science and technology</jtitle><stitle>MLST</stitle><addtitle>Mach. Learn.: Sci. Technol</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>5</volume><issue>3</issue><spage>35065</spage><pages>35065-</pages><issn>2632-2153</issn><eissn>2632-2153</eissn><coden>MLSTCK</coden><abstract>As an emerging computing architecture, the computing-in-memory (CIM) exhibits significant potential for energy efficiency and computing power in artificial intelligence applications. However, the intrinsic non-idealities of CIM devices, manifesting as random interference on the weights of neural network, may significantly impact the inference accuracy. In this paper, we propose a novel training algorithm designed to mitigate the impact of weight noise. The algorithm strategically minimizes cross-entropy loss while concurrently refining the feature representations in intermediate layers to emulate those of an ideal, noise-free network. This dual-objective approach not only preserves the accuracy of the neural network but also enhances its robustness against noise-induced degradation. Empirical validation across several benchmark datasets confirms that our algorithm sets a new benchmark for accuracy in CIM-enabled neural network applications. Compared to the most commonly used forward noise training methods, our approach yields approximately a 2% accuracy boost on the ResNet32 model with the CIFAR-10 dataset and a weight noise scale of 0.2, and achieves a minimum performance gain of 1% on ResNet18 with the ImageNet dataset under the same noise quantization conditions.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2632-2153/ad734a</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2732-3419</orcidid><orcidid>https://orcid.org/0009-0007-1675-4973</orcidid><orcidid>https://orcid.org/0009-0001-7777-2098</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2632-2153 |
ispartof | Machine learning: science and technology, 2024-09, Vol.5 (3), p.35065 |
issn | 2632-2153 2632-2153 |
language | eng |
recordid | cdi_crossref_primary_10_1088_2632_2153_ad734a |
source | Publicly Available Content Database |
subjects | Accuracy Algorithms Artificial intelligence Benchmarks Computation computing in memory Datasets dual-objective optimization Entropy (Information theory) Neural networks parameter perturbation Regularization Robustness weight noise |
title | Improving model robustness to weight noise via consistency regularization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A42%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20model%20robustness%20to%20weight%20noise%20via%20consistency%20regularization&rft.jtitle=Machine%20learning:%20science%20and%20technology&rft.au=Hou,%20Yaoqi&rft.date=2024-09-01&rft.volume=5&rft.issue=3&rft.spage=35065&rft.pages=35065-&rft.issn=2632-2153&rft.eissn=2632-2153&rft.coden=MLSTCK&rft_id=info:doi/10.1088/2632-2153/ad734a&rft_dat=%3Cproquest_cross%3E3100549225%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c299t-8adea69024b987c72ff97bce06c94f215ce622da83addaa35e765dc57642a5463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3100549225&rft_id=info:pmid/&rfr_iscdi=true |