Loading…
Expanding the potential of biosensors: a review on organic field effect transistor (OFET) and organic electrochemical transistor (OECT) biosensors
Organic electronics have gained significant attention in the field of biosensors owing to their immense potential for economical, lightweight, and adaptable sensing devices. This review explores the potential of organic electronics-based biosensors as a revolutionary technology for biosensing applic...
Saved in:
Published in: | Materials futures 2023-12, Vol.2 (4), p.42401 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Organic electronics have gained significant attention in the field of biosensors owing to their immense potential for economical, lightweight, and adaptable sensing devices. This review explores the potential of organic electronics-based biosensors as a revolutionary technology for biosensing applications. The focus is on two types of organic biosensors: organic field effect transistor (OFET) and organic electrochemical transistor (OECT) biosensors. OFET biosensors have found extensive application in glucose, DNA, enzyme, ion, and gas sensing applications, but suffer from limitations related to low sensitivity and selectivity. On the other hand, OECT biosensors have shown superior performance in sensitivity, selectivity, and signal-to-noise ratio, owing to their unique mechanism of operation, which involves the modulation of electrolyte concentration to regulate the conductivity of the active layer. Recent advancements in OECT biosensors have demonstrated their potential for biomedical and environmental sensing, including the detection of neurotransmitters, bacteria, and heavy metals. Overall, the future directions of OFET and OECT biosensors involve overcoming these challenges and developing advanced devices with improved sensitivity, selectivity, reproducibility, and stability. The potential applications span diverse fields including human health, food analysis, and environment monitoring. Continued research and development in organic biosensors hold great promise for significant advancements in sensing technology, opening up new possibilities for biomedical and environmental applications. |
---|---|
ISSN: | 2752-5724 2752-5724 |
DOI: | 10.1088/2752-5724/ace3dd |