Loading…
Boundary values of holomorphic semigroups
Suppose AA generates a bounded strongly continuous holomorphic semigroup of angle π/2\pi /2. We show that iAiA generates a (1−A)−r{(1 - A)^{ - r}} regularized group, which is O(1+|s|r)∀r>γ⩾0O(1 + |s{|^r})\;\forall r > \gamma \geqslant 0, if and only if ||ezA|||{e^{zA}}|| is O(((1+|z|)/Re(z))r...
Saved in:
Published in: | Proceedings of the American Mathematical Society 1993, Vol.118 (1), p.113-118 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Suppose AA generates a bounded strongly continuous holomorphic semigroup of angle π/2\pi /2. We show that iAiA generates a (1−A)−r{(1 - A)^{ - r}} regularized group, which is O(1+|s|r)∀r>γ⩾0O(1 + |s{|^r})\;\forall r > \gamma \geqslant 0, if and only if ||ezA|||{e^{zA}}|| is O(((1+|z|)/Re(z))r)∀r>γO({((1 + |z|)/\operatorname {Re} (z))^r})\forall r > \gamma and iAiA generates a bounded (1−A)−r{(1 - A)^{ - r}} regularized group ∀r>γ⩾0\forall r > \gamma \geqslant 0 if and only if ||ezA|||{e^{zA}}|| is O((1/Re(z))r)∀r>γO({(1/\operatorname {Re} (z))^r})\;\forall r > \gamma. We apply this to the Schrödinger operator i(Δ−V)i(\Delta - V). |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/S0002-9939-1993-1128725-X |