Loading…

Rational curves on del Pezzo surfaces in positive characteristic

We study the space of rational curves on del Pezzo surfaces in positive characteristic. For most primes p we prove the irreducibility of the moduli space of rational curves of a given nef class, extending results of Testa in characteristic 0. We also investigate the principles of Geometric Manin’s C...

Full description

Saved in:
Bibliographic Details
Published in:Transactions of the American Mathematical Society. Series B 2023-03, Vol.10 (14), p.407-451
Main Authors: Beheshti, Roya, Lehmann, Brian, Riedl, Eric, Tanimoto, Sho
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a2088-8740e71aaa71e8c5cb57cf94342be772849e73c03ac9973fea0a62ce340a74d23
cites cdi_FETCH-LOGICAL-a2088-8740e71aaa71e8c5cb57cf94342be772849e73c03ac9973fea0a62ce340a74d23
container_end_page 451
container_issue 14
container_start_page 407
container_title Transactions of the American Mathematical Society. Series B
container_volume 10
creator Beheshti, Roya
Lehmann, Brian
Riedl, Eric
Tanimoto, Sho
description We study the space of rational curves on del Pezzo surfaces in positive characteristic. For most primes p we prove the irreducibility of the moduli space of rational curves of a given nef class, extending results of Testa in characteristic 0. We also investigate the principles of Geometric Manin’s Conjecture for weak del Pezzo surfaces. In the course of this investigation, we give examples of weak del Pezzo surfaces defined over \mathbb F_2(t) or \mathbb {F}_{3}(t) such that the exceptional sets in Manin’s Conjecture are Zariski dense.
doi_str_mv 10.1090/btran/138
format article
fullrecord <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_btran_138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_btran_138</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2088-8740e71aaa71e8c5cb57cf94342be772849e73c03ac9973fea0a62ce340a74d23</originalsourceid><addsrcrecordid>eNp9j01Lw0AQhhdRsLQ9-A_24MVD7OxH3M1NKVqFQkX0HCbTCa6kSdlNC_bXG60HT76XeRkeXniEuFBwraCAWdVHbGfK-BMx0sZABkNO__RzMU3pYyhK6dzlfiRuX7APXYuNpF3cc5JdK9fcyGc-HDqZdrFGGr6hldsuhT7sWdI7RqSeY0h9oIk4q7FJPP29Y_H2cP86f8yWq8XT_G6ZoQbvM-8ssFOI6BR7yqnKHdWFNVZX7Jz2tmBnCAxSUThTMwLeaGJjAZ1dazMWV8ddil1KketyG8MG42epoPy2L3_sy8F-YC-PLG7SP9gXeipZnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rational curves on del Pezzo surfaces in positive characteristic</title><source>American Mathematical Society Publications (Freely Accessible)</source><creator>Beheshti, Roya ; Lehmann, Brian ; Riedl, Eric ; Tanimoto, Sho</creator><creatorcontrib>Beheshti, Roya ; Lehmann, Brian ; Riedl, Eric ; Tanimoto, Sho</creatorcontrib><description>We study the space of rational curves on del Pezzo surfaces in positive characteristic. For most primes p we prove the irreducibility of the moduli space of rational curves of a given nef class, extending results of Testa in characteristic 0. We also investigate the principles of Geometric Manin’s Conjecture for weak del Pezzo surfaces. In the course of this investigation, we give examples of weak del Pezzo surfaces defined over \mathbb F_2(t) or \mathbb {F}_{3}(t) such that the exceptional sets in Manin’s Conjecture are Zariski dense.</description><identifier>ISSN: 2330-0000</identifier><identifier>EISSN: 2330-0000</identifier><identifier>DOI: 10.1090/btran/138</identifier><language>eng</language><ispartof>Transactions of the American Mathematical Society. Series B, 2023-03, Vol.10 (14), p.407-451</ispartof><rights>Copyright 2023, by the authors under Creative Commons Attribution-NonCommercial 3.0 License (CC BY NC 3.0)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a2088-8740e71aaa71e8c5cb57cf94342be772849e73c03ac9973fea0a62ce340a74d23</citedby><cites>FETCH-LOGICAL-a2088-8740e71aaa71e8c5cb57cf94342be772849e73c03ac9973fea0a62ce340a74d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/btran/2023-10-14/S2330-0000-2023-00138-8/S2330-0000-2023-00138-8.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/btran/2023-10-14/S2330-0000-2023-00138-8/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>69,314,780,784,23324,27924,27925,77838,77848</link.rule.ids></links><search><creatorcontrib>Beheshti, Roya</creatorcontrib><creatorcontrib>Lehmann, Brian</creatorcontrib><creatorcontrib>Riedl, Eric</creatorcontrib><creatorcontrib>Tanimoto, Sho</creatorcontrib><title>Rational curves on del Pezzo surfaces in positive characteristic</title><title>Transactions of the American Mathematical Society. Series B</title><description>We study the space of rational curves on del Pezzo surfaces in positive characteristic. For most primes p we prove the irreducibility of the moduli space of rational curves of a given nef class, extending results of Testa in characteristic 0. We also investigate the principles of Geometric Manin’s Conjecture for weak del Pezzo surfaces. In the course of this investigation, we give examples of weak del Pezzo surfaces defined over \mathbb F_2(t) or \mathbb {F}_{3}(t) such that the exceptional sets in Manin’s Conjecture are Zariski dense.</description><issn>2330-0000</issn><issn>2330-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9j01Lw0AQhhdRsLQ9-A_24MVD7OxH3M1NKVqFQkX0HCbTCa6kSdlNC_bXG60HT76XeRkeXniEuFBwraCAWdVHbGfK-BMx0sZABkNO__RzMU3pYyhK6dzlfiRuX7APXYuNpF3cc5JdK9fcyGc-HDqZdrFGGr6hldsuhT7sWdI7RqSeY0h9oIk4q7FJPP29Y_H2cP86f8yWq8XT_G6ZoQbvM-8ssFOI6BR7yqnKHdWFNVZX7Jz2tmBnCAxSUThTMwLeaGJjAZ1dazMWV8ddil1KketyG8MG42epoPy2L3_sy8F-YC-PLG7SP9gXeipZnw</recordid><startdate>20230306</startdate><enddate>20230306</enddate><creator>Beheshti, Roya</creator><creator>Lehmann, Brian</creator><creator>Riedl, Eric</creator><creator>Tanimoto, Sho</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230306</creationdate><title>Rational curves on del Pezzo surfaces in positive characteristic</title><author>Beheshti, Roya ; Lehmann, Brian ; Riedl, Eric ; Tanimoto, Sho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2088-8740e71aaa71e8c5cb57cf94342be772849e73c03ac9973fea0a62ce340a74d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beheshti, Roya</creatorcontrib><creatorcontrib>Lehmann, Brian</creatorcontrib><creatorcontrib>Riedl, Eric</creatorcontrib><creatorcontrib>Tanimoto, Sho</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society. Series B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beheshti, Roya</au><au>Lehmann, Brian</au><au>Riedl, Eric</au><au>Tanimoto, Sho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational curves on del Pezzo surfaces in positive characteristic</atitle><jtitle>Transactions of the American Mathematical Society. Series B</jtitle><date>2023-03-06</date><risdate>2023</risdate><volume>10</volume><issue>14</issue><spage>407</spage><epage>451</epage><pages>407-451</pages><issn>2330-0000</issn><eissn>2330-0000</eissn><abstract>We study the space of rational curves on del Pezzo surfaces in positive characteristic. For most primes p we prove the irreducibility of the moduli space of rational curves of a given nef class, extending results of Testa in characteristic 0. We also investigate the principles of Geometric Manin’s Conjecture for weak del Pezzo surfaces. In the course of this investigation, we give examples of weak del Pezzo surfaces defined over \mathbb F_2(t) or \mathbb {F}_{3}(t) such that the exceptional sets in Manin’s Conjecture are Zariski dense.</abstract><doi>10.1090/btran/138</doi><tpages>45</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2330-0000
ispartof Transactions of the American Mathematical Society. Series B, 2023-03, Vol.10 (14), p.407-451
issn 2330-0000
2330-0000
language eng
recordid cdi_crossref_primary_10_1090_btran_138
source American Mathematical Society Publications (Freely Accessible)
title Rational curves on del Pezzo surfaces in positive characteristic
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A13%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20curves%20on%20del%20Pezzo%20surfaces%20in%20positive%20characteristic&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society.%20Series%20B&rft.au=Beheshti,%20Roya&rft.date=2023-03-06&rft.volume=10&rft.issue=14&rft.spage=407&rft.epage=451&rft.pages=407-451&rft.issn=2330-0000&rft.eissn=2330-0000&rft_id=info:doi/10.1090/btran/138&rft_dat=%3Cams_cross%3E10_1090_btran_138%3C/ams_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a2088-8740e71aaa71e8c5cb57cf94342be772849e73c03ac9973fea0a62ce340a74d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true