Loading…
Conformal tilings I: foundations, theory, and practice
conformal tilings. These are similar to traditional tilings in that they realize abstract patterns of combinatorial polygons as concrete patterns of geometric shapes, the tiles. In the conformal case, however, these geometric tiles carry prescribed conformal rather than prescribed euclidean structur...
Saved in:
Published in: | Conformal geometry and dynamics 2017-01, Vol.21 (1), p.1-63 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a289t-a76ac7fa237d31058bc3c01b23d7c85b8c8a5d45e943d7df422fd119250e2e393 |
---|---|
cites | cdi_FETCH-LOGICAL-a289t-a76ac7fa237d31058bc3c01b23d7c85b8c8a5d45e943d7df422fd119250e2e393 |
container_end_page | 63 |
container_issue | 1 |
container_start_page | 1 |
container_title | Conformal geometry and dynamics |
container_volume | 21 |
creator | Bowers, Philip Stephenson, Kenneth |
description | conformal tilings. These are similar to traditional tilings in that they realize abstract patterns of combinatorial polygons as concrete patterns of geometric shapes, the tiles. In the conformal case, however, these geometric tiles carry prescribed conformal rather than prescribed euclidean structure. The authors develop the topic from the ground up: definitions and terminology, basic theory on existence, uniqueness and properties, numerous experiments and examples, comparisons to traditional tilings, patterns unique to conformal tiling, and details on computability through circle packing. Special attention is placed on aperiodic hierarchical tilings and on connections between abstract combinatorics on one hand and their geometric realizations on the other. Many of the motivations for studying tilings remain unchanged, not least being the pure beauty and intricacy of the patterns.]]> |
doi_str_mv | 10.1090/ecgd/304 |
format | article |
fullrecord | <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_ecgd_304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_ecgd_304</sourcerecordid><originalsourceid>FETCH-LOGICAL-a289t-a76ac7fa237d31058bc3c01b23d7c85b8c8a5d45e943d7df422fd119250e2e393</originalsourceid><addsrcrecordid>eNp1j81Kw0AYRQdRsFbBRxhw46Kx881PZ-JOQtVCwY2uw5f5qZEkU2biom9vSl24cXUvl8OFQ8gtsAdgJVt6u3NLweQZmQEzppCgxfmffkmucv5iDEArOSOrKg4hph47OrZdO-wy3TzSEL8Hh2Mbh7yg46eP6bCgODi6T2jH1vprchGwy_7mN-fk43n9Xr0W27eXTfW0LZCbcixQr9DqgFxoJ4Ap01hhGTRcOG2Naow1qJxUvpTT4oLkPDiAkivmuRelmJP7069NMefkQ71PbY_pUAOrj7710beefCf07oRin_-nfgAr9FNS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Conformal tilings I: foundations, theory, and practice</title><source>American Mathematical Society Publications</source><source>American Mathematical Society Publications (Freely Accessible)</source><creator>Bowers, Philip ; Stephenson, Kenneth</creator><creatorcontrib>Bowers, Philip ; Stephenson, Kenneth</creatorcontrib><description>conformal tilings. These are similar to traditional tilings in that they realize abstract patterns of combinatorial polygons as concrete patterns of geometric shapes, the tiles. In the conformal case, however, these geometric tiles carry prescribed conformal rather than prescribed euclidean structure. The authors develop the topic from the ground up: definitions and terminology, basic theory on existence, uniqueness and properties, numerous experiments and examples, comparisons to traditional tilings, patterns unique to conformal tiling, and details on computability through circle packing. Special attention is placed on aperiodic hierarchical tilings and on connections between abstract combinatorics on one hand and their geometric realizations on the other. Many of the motivations for studying tilings remain unchanged, not least being the pure beauty and intricacy of the patterns.]]></description><identifier>ISSN: 1088-4173</identifier><identifier>EISSN: 1088-4173</identifier><identifier>DOI: 10.1090/ecgd/304</identifier><language>eng</language><ispartof>Conformal geometry and dynamics, 2017-01, Vol.21 (1), p.1-63</ispartof><rights>Copyright 2017, American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a289t-a76ac7fa237d31058bc3c01b23d7c85b8c8a5d45e943d7df422fd119250e2e393</citedby><cites>FETCH-LOGICAL-a289t-a76ac7fa237d31058bc3c01b23d7c85b8c8a5d45e943d7df422fd119250e2e393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/ecgd/2017-21-01/S1088-4173-2017-00304-6/S1088-4173-2017-00304-6.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/ecgd/2017-21-01/S1088-4173-2017-00304-6/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,780,784,23324,23328,27924,27925,77708,77710,77718,77720</link.rule.ids></links><search><creatorcontrib>Bowers, Philip</creatorcontrib><creatorcontrib>Stephenson, Kenneth</creatorcontrib><title>Conformal tilings I: foundations, theory, and practice</title><title>Conformal geometry and dynamics</title><description>conformal tilings. These are similar to traditional tilings in that they realize abstract patterns of combinatorial polygons as concrete patterns of geometric shapes, the tiles. In the conformal case, however, these geometric tiles carry prescribed conformal rather than prescribed euclidean structure. The authors develop the topic from the ground up: definitions and terminology, basic theory on existence, uniqueness and properties, numerous experiments and examples, comparisons to traditional tilings, patterns unique to conformal tiling, and details on computability through circle packing. Special attention is placed on aperiodic hierarchical tilings and on connections between abstract combinatorics on one hand and their geometric realizations on the other. Many of the motivations for studying tilings remain unchanged, not least being the pure beauty and intricacy of the patterns.]]></description><issn>1088-4173</issn><issn>1088-4173</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1j81Kw0AYRQdRsFbBRxhw46Kx881PZ-JOQtVCwY2uw5f5qZEkU2biom9vSl24cXUvl8OFQ8gtsAdgJVt6u3NLweQZmQEzppCgxfmffkmucv5iDEArOSOrKg4hph47OrZdO-wy3TzSEL8Hh2Mbh7yg46eP6bCgODi6T2jH1vprchGwy_7mN-fk43n9Xr0W27eXTfW0LZCbcixQr9DqgFxoJ4Ap01hhGTRcOG2Naow1qJxUvpTT4oLkPDiAkivmuRelmJP7069NMefkQ71PbY_pUAOrj7710beefCf07oRin_-nfgAr9FNS</recordid><startdate>20170110</startdate><enddate>20170110</enddate><creator>Bowers, Philip</creator><creator>Stephenson, Kenneth</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170110</creationdate><title>Conformal tilings I: foundations, theory, and practice</title><author>Bowers, Philip ; Stephenson, Kenneth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a289t-a76ac7fa237d31058bc3c01b23d7c85b8c8a5d45e943d7df422fd119250e2e393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bowers, Philip</creatorcontrib><creatorcontrib>Stephenson, Kenneth</creatorcontrib><collection>CrossRef</collection><jtitle>Conformal geometry and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bowers, Philip</au><au>Stephenson, Kenneth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conformal tilings I: foundations, theory, and practice</atitle><jtitle>Conformal geometry and dynamics</jtitle><date>2017-01-10</date><risdate>2017</risdate><volume>21</volume><issue>1</issue><spage>1</spage><epage>63</epage><pages>1-63</pages><issn>1088-4173</issn><eissn>1088-4173</eissn><abstract>conformal tilings. These are similar to traditional tilings in that they realize abstract patterns of combinatorial polygons as concrete patterns of geometric shapes, the tiles. In the conformal case, however, these geometric tiles carry prescribed conformal rather than prescribed euclidean structure. The authors develop the topic from the ground up: definitions and terminology, basic theory on existence, uniqueness and properties, numerous experiments and examples, comparisons to traditional tilings, patterns unique to conformal tiling, and details on computability through circle packing. Special attention is placed on aperiodic hierarchical tilings and on connections between abstract combinatorics on one hand and their geometric realizations on the other. Many of the motivations for studying tilings remain unchanged, not least being the pure beauty and intricacy of the patterns.]]></abstract><doi>10.1090/ecgd/304</doi><tpages>63</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1088-4173 |
ispartof | Conformal geometry and dynamics, 2017-01, Vol.21 (1), p.1-63 |
issn | 1088-4173 1088-4173 |
language | eng |
recordid | cdi_crossref_primary_10_1090_ecgd_304 |
source | American Mathematical Society Publications; American Mathematical Society Publications (Freely Accessible) |
title | Conformal tilings I: foundations, theory, and practice |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conformal%20tilings%20I:%20foundations,%20theory,%20and%20practice&rft.jtitle=Conformal%20geometry%20and%20dynamics&rft.au=Bowers,%20Philip&rft.date=2017-01-10&rft.volume=21&rft.issue=1&rft.spage=1&rft.epage=63&rft.pages=1-63&rft.issn=1088-4173&rft.eissn=1088-4173&rft_id=info:doi/10.1090/ecgd/304&rft_dat=%3Cams_cross%3E10_1090_ecgd_304%3C/ams_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a289t-a76ac7fa237d31058bc3c01b23d7c85b8c8a5d45e943d7df422fd119250e2e393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |