Loading…

Conformal tilings I: foundations, theory, and practice

conformal tilings. These are similar to traditional tilings in that they realize abstract patterns of combinatorial polygons as concrete patterns of geometric shapes, the tiles. In the conformal case, however, these geometric tiles carry prescribed conformal rather than prescribed euclidean structur...

Full description

Saved in:
Bibliographic Details
Published in:Conformal geometry and dynamics 2017-01, Vol.21 (1), p.1-63
Main Authors: Bowers, Philip, Stephenson, Kenneth
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a289t-a76ac7fa237d31058bc3c01b23d7c85b8c8a5d45e943d7df422fd119250e2e393
cites cdi_FETCH-LOGICAL-a289t-a76ac7fa237d31058bc3c01b23d7c85b8c8a5d45e943d7df422fd119250e2e393
container_end_page 63
container_issue 1
container_start_page 1
container_title Conformal geometry and dynamics
container_volume 21
creator Bowers, Philip
Stephenson, Kenneth
description conformal tilings. These are similar to traditional tilings in that they realize abstract patterns of combinatorial polygons as concrete patterns of geometric shapes, the tiles. In the conformal case, however, these geometric tiles carry prescribed conformal rather than prescribed euclidean structure. The authors develop the topic from the ground up: definitions and terminology, basic theory on existence, uniqueness and properties, numerous experiments and examples, comparisons to traditional tilings, patterns unique to conformal tiling, and details on computability through circle packing. Special attention is placed on aperiodic hierarchical tilings and on connections between abstract combinatorics on one hand and their geometric realizations on the other. Many of the motivations for studying tilings remain unchanged, not least being the pure beauty and intricacy of the patterns.]]>
doi_str_mv 10.1090/ecgd/304
format article
fullrecord <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_ecgd_304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_ecgd_304</sourcerecordid><originalsourceid>FETCH-LOGICAL-a289t-a76ac7fa237d31058bc3c01b23d7c85b8c8a5d45e943d7df422fd119250e2e393</originalsourceid><addsrcrecordid>eNp1j81Kw0AYRQdRsFbBRxhw46Kx881PZ-JOQtVCwY2uw5f5qZEkU2biom9vSl24cXUvl8OFQ8gtsAdgJVt6u3NLweQZmQEzppCgxfmffkmucv5iDEArOSOrKg4hph47OrZdO-wy3TzSEL8Hh2Mbh7yg46eP6bCgODi6T2jH1vprchGwy_7mN-fk43n9Xr0W27eXTfW0LZCbcixQr9DqgFxoJ4Ap01hhGTRcOG2Naow1qJxUvpTT4oLkPDiAkivmuRelmJP7069NMefkQ71PbY_pUAOrj7710beefCf07oRin_-nfgAr9FNS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Conformal tilings I: foundations, theory, and practice</title><source>American Mathematical Society Publications</source><source>American Mathematical Society Publications (Freely Accessible)</source><creator>Bowers, Philip ; Stephenson, Kenneth</creator><creatorcontrib>Bowers, Philip ; Stephenson, Kenneth</creatorcontrib><description>conformal tilings. These are similar to traditional tilings in that they realize abstract patterns of combinatorial polygons as concrete patterns of geometric shapes, the tiles. In the conformal case, however, these geometric tiles carry prescribed conformal rather than prescribed euclidean structure. The authors develop the topic from the ground up: definitions and terminology, basic theory on existence, uniqueness and properties, numerous experiments and examples, comparisons to traditional tilings, patterns unique to conformal tiling, and details on computability through circle packing. Special attention is placed on aperiodic hierarchical tilings and on connections between abstract combinatorics on one hand and their geometric realizations on the other. Many of the motivations for studying tilings remain unchanged, not least being the pure beauty and intricacy of the patterns.]]&gt;</description><identifier>ISSN: 1088-4173</identifier><identifier>EISSN: 1088-4173</identifier><identifier>DOI: 10.1090/ecgd/304</identifier><language>eng</language><ispartof>Conformal geometry and dynamics, 2017-01, Vol.21 (1), p.1-63</ispartof><rights>Copyright 2017, American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a289t-a76ac7fa237d31058bc3c01b23d7c85b8c8a5d45e943d7df422fd119250e2e393</citedby><cites>FETCH-LOGICAL-a289t-a76ac7fa237d31058bc3c01b23d7c85b8c8a5d45e943d7df422fd119250e2e393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/ecgd/2017-21-01/S1088-4173-2017-00304-6/S1088-4173-2017-00304-6.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/ecgd/2017-21-01/S1088-4173-2017-00304-6/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,780,784,23324,23328,27924,27925,77708,77710,77718,77720</link.rule.ids></links><search><creatorcontrib>Bowers, Philip</creatorcontrib><creatorcontrib>Stephenson, Kenneth</creatorcontrib><title>Conformal tilings I: foundations, theory, and practice</title><title>Conformal geometry and dynamics</title><description>conformal tilings. These are similar to traditional tilings in that they realize abstract patterns of combinatorial polygons as concrete patterns of geometric shapes, the tiles. In the conformal case, however, these geometric tiles carry prescribed conformal rather than prescribed euclidean structure. The authors develop the topic from the ground up: definitions and terminology, basic theory on existence, uniqueness and properties, numerous experiments and examples, comparisons to traditional tilings, patterns unique to conformal tiling, and details on computability through circle packing. Special attention is placed on aperiodic hierarchical tilings and on connections between abstract combinatorics on one hand and their geometric realizations on the other. Many of the motivations for studying tilings remain unchanged, not least being the pure beauty and intricacy of the patterns.]]&gt;</description><issn>1088-4173</issn><issn>1088-4173</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1j81Kw0AYRQdRsFbBRxhw46Kx881PZ-JOQtVCwY2uw5f5qZEkU2biom9vSl24cXUvl8OFQ8gtsAdgJVt6u3NLweQZmQEzppCgxfmffkmucv5iDEArOSOrKg4hph47OrZdO-wy3TzSEL8Hh2Mbh7yg46eP6bCgODi6T2jH1vprchGwy_7mN-fk43n9Xr0W27eXTfW0LZCbcixQr9DqgFxoJ4Ap01hhGTRcOG2Naow1qJxUvpTT4oLkPDiAkivmuRelmJP7069NMefkQ71PbY_pUAOrj7710beefCf07oRin_-nfgAr9FNS</recordid><startdate>20170110</startdate><enddate>20170110</enddate><creator>Bowers, Philip</creator><creator>Stephenson, Kenneth</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170110</creationdate><title>Conformal tilings I: foundations, theory, and practice</title><author>Bowers, Philip ; Stephenson, Kenneth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a289t-a76ac7fa237d31058bc3c01b23d7c85b8c8a5d45e943d7df422fd119250e2e393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bowers, Philip</creatorcontrib><creatorcontrib>Stephenson, Kenneth</creatorcontrib><collection>CrossRef</collection><jtitle>Conformal geometry and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bowers, Philip</au><au>Stephenson, Kenneth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conformal tilings I: foundations, theory, and practice</atitle><jtitle>Conformal geometry and dynamics</jtitle><date>2017-01-10</date><risdate>2017</risdate><volume>21</volume><issue>1</issue><spage>1</spage><epage>63</epage><pages>1-63</pages><issn>1088-4173</issn><eissn>1088-4173</eissn><abstract>conformal tilings. These are similar to traditional tilings in that they realize abstract patterns of combinatorial polygons as concrete patterns of geometric shapes, the tiles. In the conformal case, however, these geometric tiles carry prescribed conformal rather than prescribed euclidean structure. The authors develop the topic from the ground up: definitions and terminology, basic theory on existence, uniqueness and properties, numerous experiments and examples, comparisons to traditional tilings, patterns unique to conformal tiling, and details on computability through circle packing. Special attention is placed on aperiodic hierarchical tilings and on connections between abstract combinatorics on one hand and their geometric realizations on the other. Many of the motivations for studying tilings remain unchanged, not least being the pure beauty and intricacy of the patterns.]]&gt;</abstract><doi>10.1090/ecgd/304</doi><tpages>63</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1088-4173
ispartof Conformal geometry and dynamics, 2017-01, Vol.21 (1), p.1-63
issn 1088-4173
1088-4173
language eng
recordid cdi_crossref_primary_10_1090_ecgd_304
source American Mathematical Society Publications; American Mathematical Society Publications (Freely Accessible)
title Conformal tilings I: foundations, theory, and practice
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conformal%20tilings%20I:%20foundations,%20theory,%20and%20practice&rft.jtitle=Conformal%20geometry%20and%20dynamics&rft.au=Bowers,%20Philip&rft.date=2017-01-10&rft.volume=21&rft.issue=1&rft.spage=1&rft.epage=63&rft.pages=1-63&rft.issn=1088-4173&rft.eissn=1088-4173&rft_id=info:doi/10.1090/ecgd/304&rft_dat=%3Cams_cross%3E10_1090_ecgd_304%3C/ams_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a289t-a76ac7fa237d31058bc3c01b23d7c85b8c8a5d45e943d7df422fd119250e2e393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true