Loading…

Finite connected components of the aliquot graph

Conditional on a strong form of the Goldbach conjecture, we determine all finite connected components of the aliquot graph containing a number less than 10^9, as well as those containing an amicable pair below 10^{14} or one of the known perfect or sociable cycles below 10^{17}. Along the way we dev...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics of computation 2018-11, Vol.87 (314), p.2891-2902
Main Author: BOOKER, ANDREW R.
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a315t-e8d8f03d86f66a5674f08869acaadf2aacedc97247dde9a924e0037ccbda0db53
cites
container_end_page 2902
container_issue 314
container_start_page 2891
container_title Mathematics of computation
container_volume 87
creator BOOKER, ANDREW R.
description Conditional on a strong form of the Goldbach conjecture, we determine all finite connected components of the aliquot graph containing a number less than 10^9, as well as those containing an amicable pair below 10^{14} or one of the known perfect or sociable cycles below 10^{17}. Along the way we develop a fast algorithm for computing the inverse image of an even number under the sum-of-proper-divisors function.
doi_str_mv 10.1090/mcom/3299
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_mcom_3299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90023883</jstor_id><sourcerecordid>90023883</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-e8d8f03d86f66a5674f08869acaadf2aacedc97247dde9a924e0037ccbda0db53</originalsourceid><addsrcrecordid>eNp9jz1PwzAURS0EEqEw8AOQMrAwhD7bsWOPqKKAVIkF5ujVHzRVEwfbDPx7EhUxMr0r3aOrdwi5pnBPQcOyN6Ffcqb1CSkoKFVJVbNTUgAwUYmGqnNykdIeAKgUTUFg3Q1ddqUJw-BMdnZK_RgGN-RUBl_mnSvx0H1-hVx-RBx3l-TM4yG5q9-7IO_rx7fVc7V5fXpZPWwq5FTkyimrPHCrpJcShWxqP30jNRpE6xmicdbohtWNtU6jZrUD4I0xW4tgt4IvyN1x18SQUnS-HWPXY_xuKbSzajurtrPqxN4c2X3KIf6BepLmSvGpvz322Kd_Zn4A6wFdgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Finite connected components of the aliquot graph</title><source>American Mathematical Society Publications - Open Access</source><source>JSTOR</source><creator>BOOKER, ANDREW R.</creator><creatorcontrib>BOOKER, ANDREW R.</creatorcontrib><description>Conditional on a strong form of the Goldbach conjecture, we determine all finite connected components of the aliquot graph containing a number less than 10^9, as well as those containing an amicable pair below 10^{14} or one of the known perfect or sociable cycles below 10^{17}. Along the way we develop a fast algorithm for computing the inverse image of an even number under the sum-of-proper-divisors function.</description><identifier>ISSN: 0025-5718</identifier><identifier>EISSN: 1088-6842</identifier><identifier>DOI: 10.1090/mcom/3299</identifier><language>eng</language><publisher>American Mathematical Society</publisher><ispartof>Mathematics of computation, 2018-11, Vol.87 (314), p.2891-2902</ispartof><rights>Copyright 2018, American Mathematical Society</rights><rights>2018 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-e8d8f03d86f66a5674f08869acaadf2aacedc97247dde9a924e0037ccbda0db53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/mcom/2018-87-314/S0025-5718-2018-03299-9/S0025-5718-2018-03299-9.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/mcom/2018-87-314/S0025-5718-2018-03299-9/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>69,314,780,784,23324,27924,27925,58238,58471,77710,77720</link.rule.ids></links><search><creatorcontrib>BOOKER, ANDREW R.</creatorcontrib><title>Finite connected components of the aliquot graph</title><title>Mathematics of computation</title><description>Conditional on a strong form of the Goldbach conjecture, we determine all finite connected components of the aliquot graph containing a number less than 10^9, as well as those containing an amicable pair below 10^{14} or one of the known perfect or sociable cycles below 10^{17}. Along the way we develop a fast algorithm for computing the inverse image of an even number under the sum-of-proper-divisors function.</description><issn>0025-5718</issn><issn>1088-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9jz1PwzAURS0EEqEw8AOQMrAwhD7bsWOPqKKAVIkF5ujVHzRVEwfbDPx7EhUxMr0r3aOrdwi5pnBPQcOyN6Ffcqb1CSkoKFVJVbNTUgAwUYmGqnNykdIeAKgUTUFg3Q1ddqUJw-BMdnZK_RgGN-RUBl_mnSvx0H1-hVx-RBx3l-TM4yG5q9-7IO_rx7fVc7V5fXpZPWwq5FTkyimrPHCrpJcShWxqP30jNRpE6xmicdbohtWNtU6jZrUD4I0xW4tgt4IvyN1x18SQUnS-HWPXY_xuKbSzajurtrPqxN4c2X3KIf6BepLmSvGpvz322Kd_Zn4A6wFdgQ</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>BOOKER, ANDREW R.</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181101</creationdate><title>Finite connected components of the aliquot graph</title><author>BOOKER, ANDREW R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-e8d8f03d86f66a5674f08869acaadf2aacedc97247dde9a924e0037ccbda0db53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BOOKER, ANDREW R.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematics of computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BOOKER, ANDREW R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite connected components of the aliquot graph</atitle><jtitle>Mathematics of computation</jtitle><date>2018-11-01</date><risdate>2018</risdate><volume>87</volume><issue>314</issue><spage>2891</spage><epage>2902</epage><pages>2891-2902</pages><issn>0025-5718</issn><eissn>1088-6842</eissn><abstract>Conditional on a strong form of the Goldbach conjecture, we determine all finite connected components of the aliquot graph containing a number less than 10^9, as well as those containing an amicable pair below 10^{14} or one of the known perfect or sociable cycles below 10^{17}. Along the way we develop a fast algorithm for computing the inverse image of an even number under the sum-of-proper-divisors function.</abstract><pub>American Mathematical Society</pub><doi>10.1090/mcom/3299</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5718
ispartof Mathematics of computation, 2018-11, Vol.87 (314), p.2891-2902
issn 0025-5718
1088-6842
language eng
recordid cdi_crossref_primary_10_1090_mcom_3299
source American Mathematical Society Publications - Open Access; JSTOR
title Finite connected components of the aliquot graph
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A25%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20connected%20components%20of%20the%20aliquot%20graph&rft.jtitle=Mathematics%20of%20computation&rft.au=BOOKER,%20ANDREW%20R.&rft.date=2018-11-01&rft.volume=87&rft.issue=314&rft.spage=2891&rft.epage=2902&rft.pages=2891-2902&rft.issn=0025-5718&rft.eissn=1088-6842&rft_id=info:doi/10.1090/mcom/3299&rft_dat=%3Cjstor_cross%3E90023883%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a315t-e8d8f03d86f66a5674f08869acaadf2aacedc97247dde9a924e0037ccbda0db53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=90023883&rfr_iscdi=true