Loading…

On a twisted Reidemeister torsion

Given a finite simplicial complex, a unimodular representation of its fundamental group, and a closed twisted cochain of odd degree, we define a twisted version of the Reidemeister torsion, extending a previous definition of V. Mathai and S. Wu. The main tool is a complex of piecewise smooth current...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the American Mathematical Society 2016-03, Vol.144 (3), p.1351-1361
Main Author: Ricardo García López
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a294t-6b94c27a2c1308e42e3982500177519c385b06ffe943a85f54eb409fe3157f5e3
container_end_page 1361
container_issue 3
container_start_page 1351
container_title Proceedings of the American Mathematical Society
container_volume 144
creator Ricardo García López
description Given a finite simplicial complex, a unimodular representation of its fundamental group, and a closed twisted cochain of odd degree, we define a twisted version of the Reidemeister torsion, extending a previous definition of V. Mathai and S. Wu. The main tool is a complex of piecewise smooth currents introduced by J. Dupont in 1986.
doi_str_mv 10.1090/proc12779
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc12779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>procamermathsoci.144.3.1351</jstor_id><sourcerecordid>procamermathsoci.144.3.1351</sourcerecordid><originalsourceid>FETCH-LOGICAL-a294t-6b94c27a2c1308e42e3982500177519c385b06ffe943a85f54eb409fe3157f5e3</originalsourceid><addsrcrecordid>eNp9j09LxDAQxYMoWFcPfoMKXjxUJ_-azFEWV4WFBdFzSLMT7GK3S1IQv70tlT16Gh783nvzGLvmcM8B4eGQ-sCFMXjCCg7WVrUV9SkrAEBUiBLP2UXOu1FyVKZgN5t96cvhu80Dbcs3arfU0SRSOfQpt_3-kp1F_5Xp6u8u2Mfq6X35Uq03z6_Lx3XlBaqhqhtUQRgvApdgSQmSaIUee4zRHIO0uoE6RkIlvdVRK2oUYCTJtYma5ILdzbkh9Tkniu6Q2s6nH8fBTdvccdvIwszu8vjlEZwA31Hq_PCZ-9A6rpSTjkvNR8vtbPFd_if5F0peXTI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On a twisted Reidemeister torsion</title><source>JSTOR Archival Journals</source><source>American Mathematical Society Publications (Freely Accessible)</source><creator>Ricardo García López</creator><creatorcontrib>Ricardo García López</creatorcontrib><description>Given a finite simplicial complex, a unimodular representation of its fundamental group, and a closed twisted cochain of odd degree, we define a twisted version of the Reidemeister torsion, extending a previous definition of V. Mathai and S. Wu. The main tool is a complex of piecewise smooth currents introduced by J. Dupont in 1986.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc12779</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>G. TOPOLOGY</subject><ispartof>Proceedings of the American Mathematical Society, 2016-03, Vol.144 (3), p.1351-1361</ispartof><rights>Copyright 2015, American Mathematical Society</rights><rights>2016 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a294t-6b94c27a2c1308e42e3982500177519c385b06ffe943a85f54eb409fe3157f5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/proc/2016-144-03/S0002-9939-2015-12779-7/S0002-9939-2015-12779-7.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/proc/2016-144-03/S0002-9939-2015-12779-7/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>69,314,780,784,23324,27924,27925,58238,58471,77838,77848</link.rule.ids></links><search><creatorcontrib>Ricardo García López</creatorcontrib><title>On a twisted Reidemeister torsion</title><title>Proceedings of the American Mathematical Society</title><description>Given a finite simplicial complex, a unimodular representation of its fundamental group, and a closed twisted cochain of odd degree, we define a twisted version of the Reidemeister torsion, extending a previous definition of V. Mathai and S. Wu. The main tool is a complex of piecewise smooth currents introduced by J. Dupont in 1986.</description><subject>G. TOPOLOGY</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9j09LxDAQxYMoWFcPfoMKXjxUJ_-azFEWV4WFBdFzSLMT7GK3S1IQv70tlT16Gh783nvzGLvmcM8B4eGQ-sCFMXjCCg7WVrUV9SkrAEBUiBLP2UXOu1FyVKZgN5t96cvhu80Dbcs3arfU0SRSOfQpt_3-kp1F_5Xp6u8u2Mfq6X35Uq03z6_Lx3XlBaqhqhtUQRgvApdgSQmSaIUee4zRHIO0uoE6RkIlvdVRK2oUYCTJtYma5ILdzbkh9Tkniu6Q2s6nH8fBTdvccdvIwszu8vjlEZwA31Hq_PCZ-9A6rpSTjkvNR8vtbPFd_if5F0peXTI</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Ricardo García López</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160301</creationdate><title>On a twisted Reidemeister torsion</title><author>Ricardo García López</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a294t-6b94c27a2c1308e42e3982500177519c385b06ffe943a85f54eb409fe3157f5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>G. TOPOLOGY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ricardo García López</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ricardo García López</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a twisted Reidemeister torsion</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2016-03-01</date><risdate>2016</risdate><volume>144</volume><issue>3</issue><spage>1351</spage><epage>1361</epage><pages>1351-1361</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>Given a finite simplicial complex, a unimodular representation of its fundamental group, and a closed twisted cochain of odd degree, we define a twisted version of the Reidemeister torsion, extending a previous definition of V. Mathai and S. Wu. The main tool is a complex of piecewise smooth currents introduced by J. Dupont in 1986.</abstract><pub>American Mathematical Society</pub><doi>10.1090/proc12779</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 2016-03, Vol.144 (3), p.1351-1361
issn 0002-9939
1088-6826
language eng
recordid cdi_crossref_primary_10_1090_proc12779
source JSTOR Archival Journals; American Mathematical Society Publications (Freely Accessible)
subjects G. TOPOLOGY
title On a twisted Reidemeister torsion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A54%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20twisted%20Reidemeister%20torsion&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Ricardo%20Garc%C3%ADa%20L%C3%B3pez&rft.date=2016-03-01&rft.volume=144&rft.issue=3&rft.spage=1351&rft.epage=1361&rft.pages=1351-1361&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc12779&rft_dat=%3Cjstor_cross%3Eprocamermathsoci.144.3.1351%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a294t-6b94c27a2c1308e42e3982500177519c385b06ffe943a85f54eb409fe3157f5e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=procamermathsoci.144.3.1351&rfr_iscdi=true