Loading…

Weak compactness of sublevel sets

In this paper we provide a short proof of the fact that if X is a Banach space and f:X \to \mathbb{R} \cup \{\infty \} is a proper function such that f-x^* attains its minimum for every x^* \in X^*, then all the sublevels of f are relatively weakly compact. This result has many applications.

Saved in:
Bibliographic Details
Published in:Proceedings of the American Mathematical Society 2017-08, Vol.145 (8), p.3377-3379
Main Author: MOORS, WARREN B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a319t-a34a6748c8b0af329b2c59e9a451e95ebfdecc008209d991a9f1e8f4e7e1399d3
cites cdi_FETCH-LOGICAL-a319t-a34a6748c8b0af329b2c59e9a451e95ebfdecc008209d991a9f1e8f4e7e1399d3
container_end_page 3379
container_issue 8
container_start_page 3377
container_title Proceedings of the American Mathematical Society
container_volume 145
creator MOORS, WARREN B.
description In this paper we provide a short proof of the fact that if X is a Banach space and f:X \to \mathbb{R} \cup \{\infty \} is a proper function such that f-x^* attains its minimum for every x^* \in X^*, then all the sublevels of f are relatively weakly compact. This result has many applications.
doi_str_mv 10.1090/proc/13466
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_13466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90010731</jstor_id><sourcerecordid>90010731</sourcerecordid><originalsourceid>FETCH-LOGICAL-a319t-a34a6748c8b0af329b2c59e9a451e95ebfdecc008209d991a9f1e8f4e7e1399d3</originalsourceid><addsrcrecordid>eNp9j79LxEAQhRdRMJ429kIsbIR4M9lNslPK4S84sFEsw2YzC56JCTtR8L8354mlzTyG9_HgU-oU4QqBYDnGwS9Rm7LcUwmCtVlp83JfJQCQZ0SaDtWRyGZ-kUyVqPMXdm-pH_rR-emdRdIhpPLRdPzJXSo8ybE6CK4TPvnNhXq-vXla3Wfrx7uH1fU6cxppmq9xZWWstw24oHNqcl8QkzMFMhXchJa9B7A5UEuEjgKyDYYrRk3U6oW63O36OIhEDvUYX3sXv2qEeitXb-XqH7kZPtvBG5mG-EfSrAWVxrm_2PWul_92vgH2PFeS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Weak compactness of sublevel sets</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>Access via JSTOR</source><creator>MOORS, WARREN B.</creator><creatorcontrib>MOORS, WARREN B.</creatorcontrib><description>In this paper we provide a short proof of the fact that if X is a Banach space and f:X \to \mathbb{R} \cup \{\infty \} is a proper function such that f-x^* attains its minimum for every x^* \in X^*, then all the sublevels of f are relatively weakly compact. This result has many applications.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/13466</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>B. ANALYSIS</subject><ispartof>Proceedings of the American Mathematical Society, 2017-08, Vol.145 (8), p.3377-3379</ispartof><rights>Copyright 2017, American Mathematical Society</rights><rights>2017 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a319t-a34a6748c8b0af329b2c59e9a451e95ebfdecc008209d991a9f1e8f4e7e1399d3</citedby><cites>FETCH-LOGICAL-a319t-a34a6748c8b0af329b2c59e9a451e95ebfdecc008209d991a9f1e8f4e7e1399d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/proc/2017-145-08/S0002-9939-2017-13466-2/S0002-9939-2017-13466-2.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/proc/2017-145-08/S0002-9939-2017-13466-2/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>69,314,780,784,23324,27924,27925,58238,58471,77838,77848</link.rule.ids></links><search><creatorcontrib>MOORS, WARREN B.</creatorcontrib><title>Weak compactness of sublevel sets</title><title>Proceedings of the American Mathematical Society</title><description>In this paper we provide a short proof of the fact that if X is a Banach space and f:X \to \mathbb{R} \cup \{\infty \} is a proper function such that f-x^* attains its minimum for every x^* \in X^*, then all the sublevels of f are relatively weakly compact. This result has many applications.</description><subject>B. ANALYSIS</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9j79LxEAQhRdRMJ429kIsbIR4M9lNslPK4S84sFEsw2YzC56JCTtR8L8354mlzTyG9_HgU-oU4QqBYDnGwS9Rm7LcUwmCtVlp83JfJQCQZ0SaDtWRyGZ-kUyVqPMXdm-pH_rR-emdRdIhpPLRdPzJXSo8ybE6CK4TPvnNhXq-vXla3Wfrx7uH1fU6cxppmq9xZWWstw24oHNqcl8QkzMFMhXchJa9B7A5UEuEjgKyDYYrRk3U6oW63O36OIhEDvUYX3sXv2qEeitXb-XqH7kZPtvBG5mG-EfSrAWVxrm_2PWul_92vgH2PFeS</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>MOORS, WARREN B.</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170801</creationdate><title>Weak compactness of sublevel sets</title><author>MOORS, WARREN B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a319t-a34a6748c8b0af329b2c59e9a451e95ebfdecc008209d991a9f1e8f4e7e1399d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>B. ANALYSIS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MOORS, WARREN B.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MOORS, WARREN B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak compactness of sublevel sets</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2017-08-01</date><risdate>2017</risdate><volume>145</volume><issue>8</issue><spage>3377</spage><epage>3379</epage><pages>3377-3379</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>In this paper we provide a short proof of the fact that if X is a Banach space and f:X \to \mathbb{R} \cup \{\infty \} is a proper function such that f-x^* attains its minimum for every x^* \in X^*, then all the sublevels of f are relatively weakly compact. This result has many applications.</abstract><pub>American Mathematical Society</pub><doi>10.1090/proc/13466</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 2017-08, Vol.145 (8), p.3377-3379
issn 0002-9939
1088-6826
language eng
recordid cdi_crossref_primary_10_1090_proc_13466
source American Mathematical Society Publications (Freely Accessible); Access via JSTOR
subjects B. ANALYSIS
title Weak compactness of sublevel sets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A26%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20compactness%20of%20sublevel%20sets&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=MOORS,%20WARREN%20B.&rft.date=2017-08-01&rft.volume=145&rft.issue=8&rft.spage=3377&rft.epage=3379&rft.pages=3377-3379&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/13466&rft_dat=%3Cjstor_cross%3E90010731%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a319t-a34a6748c8b0af329b2c59e9a451e95ebfdecc008209d991a9f1e8f4e7e1399d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=90010731&rfr_iscdi=true