Loading…

The Assouad dimension of self-affine carpets with no grid structure

Previous study of the Assouad dimension of planar self-affine sets has relied heavily on the underlying IFS having a `grid structure', thus allowing for the use of approximate squares. We study the Assouad dimension of a class of self-affine carpets which do not have an associated grid structur...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the American Mathematical Society 2017-11, Vol.145 (11), p.4905-4918
Main Authors: FRASER, JONATHAN M., JORDAN, THOMAS
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a319t-7a4e19c35dd64d02693156de9df76858438d989626a411a2141a4c3a9a88095b3
cites cdi_FETCH-LOGICAL-a319t-7a4e19c35dd64d02693156de9df76858438d989626a411a2141a4c3a9a88095b3
container_end_page 4918
container_issue 11
container_start_page 4905
container_title Proceedings of the American Mathematical Society
container_volume 145
creator FRASER, JONATHAN M.
JORDAN, THOMAS
description Previous study of the Assouad dimension of planar self-affine sets has relied heavily on the underlying IFS having a `grid structure', thus allowing for the use of approximate squares. We study the Assouad dimension of a class of self-affine carpets which do not have an associated grid structure. We find that the Assouad dimension is related to the box and Assouad dimensions of the (self-similar) projection of the self-affine set onto the first coordinate and to the local dimensions of the projection of a natural Bernoulli measure onto the first coordinate. In a special case we relate the Assouad dimension of the Przytycki-Urbański sets to the lower local dimensions of Bernoulli convolutions.
doi_str_mv 10.1090/proc/13629
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_13629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90013155</jstor_id><sourcerecordid>90013155</sourcerecordid><originalsourceid>FETCH-LOGICAL-a319t-7a4e19c35dd64d02693156de9df76858438d989626a411a2141a4c3a9a88095b3</originalsourceid><addsrcrecordid>eNp9j89LAzEQhYMoWKsX70IuXoS1mU02zRxL8RcUvNTzMm4Su6XdlMwW8b93a8Wjp-HxPt7wCXEN6h4Uqskup2YC2pZ4IkagnCusK-2pGCmlygJR47m4YF4PEdBMR2K-XAU5Y0578tK329BxmzqZouSwiQXF2HZBNpR3oWf52fYr2SX5kVsvuc_7pt_ncCnOIm04XP3esXh7fFjOn4vF69PLfLYoSAP2xZRMAGx05b01XpUWNVTWB_Rxal3ljHYeHdrSkgGgEgyQaTQhOaewetdjcXfcbXJiziHWu9xuKX_VoOqDfn3Qr3_0B_jmCK-5T_mPxEF8eFsN_e2xpy3_t_MN7jNipw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Assouad dimension of self-affine carpets with no grid structure</title><source>American Mathematical Society Publications - Open Access</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>FRASER, JONATHAN M. ; JORDAN, THOMAS</creator><creatorcontrib>FRASER, JONATHAN M. ; JORDAN, THOMAS</creatorcontrib><description>Previous study of the Assouad dimension of planar self-affine sets has relied heavily on the underlying IFS having a `grid structure', thus allowing for the use of approximate squares. We study the Assouad dimension of a class of self-affine carpets which do not have an associated grid structure. We find that the Assouad dimension is related to the box and Assouad dimensions of the (self-similar) projection of the self-affine set onto the first coordinate and to the local dimensions of the projection of a natural Bernoulli measure onto the first coordinate. In a special case we relate the Assouad dimension of the Przytycki-Urbański sets to the lower local dimensions of Bernoulli convolutions.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/13629</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>B. ANALYSIS</subject><ispartof>Proceedings of the American Mathematical Society, 2017-11, Vol.145 (11), p.4905-4918</ispartof><rights>Copyright 2017, American Mathematical Society</rights><rights>2017 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a319t-7a4e19c35dd64d02693156de9df76858438d989626a411a2141a4c3a9a88095b3</citedby><cites>FETCH-LOGICAL-a319t-7a4e19c35dd64d02693156de9df76858438d989626a411a2141a4c3a9a88095b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/proc/2017-145-11/S0002-9939-2017-13629-6/S0002-9939-2017-13629-6.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/proc/2017-145-11/S0002-9939-2017-13629-6/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>69,314,780,784,23324,27924,27925,58238,58471,77710,77720</link.rule.ids></links><search><creatorcontrib>FRASER, JONATHAN M.</creatorcontrib><creatorcontrib>JORDAN, THOMAS</creatorcontrib><title>The Assouad dimension of self-affine carpets with no grid structure</title><title>Proceedings of the American Mathematical Society</title><description>Previous study of the Assouad dimension of planar self-affine sets has relied heavily on the underlying IFS having a `grid structure', thus allowing for the use of approximate squares. We study the Assouad dimension of a class of self-affine carpets which do not have an associated grid structure. We find that the Assouad dimension is related to the box and Assouad dimensions of the (self-similar) projection of the self-affine set onto the first coordinate and to the local dimensions of the projection of a natural Bernoulli measure onto the first coordinate. In a special case we relate the Assouad dimension of the Przytycki-Urbański sets to the lower local dimensions of Bernoulli convolutions.</description><subject>B. ANALYSIS</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9j89LAzEQhYMoWKsX70IuXoS1mU02zRxL8RcUvNTzMm4Su6XdlMwW8b93a8Wjp-HxPt7wCXEN6h4Uqskup2YC2pZ4IkagnCusK-2pGCmlygJR47m4YF4PEdBMR2K-XAU5Y0578tK329BxmzqZouSwiQXF2HZBNpR3oWf52fYr2SX5kVsvuc_7pt_ncCnOIm04XP3esXh7fFjOn4vF69PLfLYoSAP2xZRMAGx05b01XpUWNVTWB_Rxal3ljHYeHdrSkgGgEgyQaTQhOaewetdjcXfcbXJiziHWu9xuKX_VoOqDfn3Qr3_0B_jmCK-5T_mPxEF8eFsN_e2xpy3_t_MN7jNipw</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>FRASER, JONATHAN M.</creator><creator>JORDAN, THOMAS</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171101</creationdate><title>The Assouad dimension of self-affine carpets with no grid structure</title><author>FRASER, JONATHAN M. ; JORDAN, THOMAS</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a319t-7a4e19c35dd64d02693156de9df76858438d989626a411a2141a4c3a9a88095b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>B. ANALYSIS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FRASER, JONATHAN M.</creatorcontrib><creatorcontrib>JORDAN, THOMAS</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FRASER, JONATHAN M.</au><au>JORDAN, THOMAS</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Assouad dimension of self-affine carpets with no grid structure</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2017-11-01</date><risdate>2017</risdate><volume>145</volume><issue>11</issue><spage>4905</spage><epage>4918</epage><pages>4905-4918</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>Previous study of the Assouad dimension of planar self-affine sets has relied heavily on the underlying IFS having a `grid structure', thus allowing for the use of approximate squares. We study the Assouad dimension of a class of self-affine carpets which do not have an associated grid structure. We find that the Assouad dimension is related to the box and Assouad dimensions of the (self-similar) projection of the self-affine set onto the first coordinate and to the local dimensions of the projection of a natural Bernoulli measure onto the first coordinate. In a special case we relate the Assouad dimension of the Przytycki-Urbański sets to the lower local dimensions of Bernoulli convolutions.</abstract><pub>American Mathematical Society</pub><doi>10.1090/proc/13629</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 2017-11, Vol.145 (11), p.4905-4918
issn 0002-9939
1088-6826
language eng
recordid cdi_crossref_primary_10_1090_proc_13629
source American Mathematical Society Publications - Open Access; JSTOR Archival Journals and Primary Sources Collection
subjects B. ANALYSIS
title The Assouad dimension of self-affine carpets with no grid structure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A31%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Assouad%20dimension%20of%20self-affine%20carpets%20with%20no%20grid%20structure&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=FRASER,%20JONATHAN%20M.&rft.date=2017-11-01&rft.volume=145&rft.issue=11&rft.spage=4905&rft.epage=4918&rft.pages=4905-4918&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/13629&rft_dat=%3Cjstor_cross%3E90013155%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a319t-7a4e19c35dd64d02693156de9df76858438d989626a411a2141a4c3a9a88095b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=90013155&rfr_iscdi=true