Loading…
A simplified Kronecker rule for one hook shape
Recently Blasiak has given a combinatorial rule for the Kronecker coefficient g_{\lambda \mu \nu } when \mu is a hook shape by defining a set of colored Yamanouchi tableaux with cardinality g_{\lambda \mu \nu } in terms of a process called conversion. We give a characterization of colored Yamanouchi...
Saved in:
Published in: | Proceedings of the American Mathematical Society 2017-09, Vol.145 (9), p.3657-3664 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a319t-ddf2c6849eded28be5f619243157d5c56658355403e952540755ba85518c47bd3 |
---|---|
cites | cdi_FETCH-LOGICAL-a319t-ddf2c6849eded28be5f619243157d5c56658355403e952540755ba85518c47bd3 |
container_end_page | 3664 |
container_issue | 9 |
container_start_page | 3657 |
container_title | Proceedings of the American Mathematical Society |
container_volume | 145 |
creator | LIU, RICKY INI |
description | Recently Blasiak has given a combinatorial rule for the Kronecker coefficient g_{\lambda \mu \nu } when \mu is a hook shape by defining a set of colored Yamanouchi tableaux with cardinality g_{\lambda \mu \nu } in terms of a process called conversion. We give a characterization of colored Yamanouchi tableaux that does not rely on conversion, which leads to a simpler formulation and proof of the Kronecker rule for one hook shape. |
doi_str_mv | 10.1090/proc/13692 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_13692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90013039</jstor_id><sourcerecordid>90013039</sourcerecordid><originalsourceid>FETCH-LOGICAL-a319t-ddf2c6849eded28be5f619243157d5c56658355403e952540755ba85518c47bd3</originalsourceid><addsrcrecordid>eNp9jztPwzAUhS0EEqGwsCN5YUFK60eu4ztWFS9RiQXmyLEdNW2DI7sM_HtcghiZju49n470EXLN2ZwzZIsxBrvgUqE4IQVnWpdKC3VKCsaYKBElnpOLlLb55FjVBZkvaeqHcd93vXf0JYYPb3c-0vi597QLkeYH3YSwo2ljRn9JzjqzT_7qN2fk_eH-bfVUrl8fn1fLdWkkx0PpXCes0hV6553QrYdOcRSV5FA7sKAUaAlQMekRRM4aoDUagGtb1a2TM3I37doYUoq-a8bYDyZ-NZw1R9PmaNr8mGb4ZoK36RDiH4nZUTKJub-dejOk_3a-AV0hWqk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A simplified Kronecker rule for one hook shape</title><source>American Mathematical Society Publications - Open Access</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>LIU, RICKY INI</creator><creatorcontrib>LIU, RICKY INI</creatorcontrib><description>Recently Blasiak has given a combinatorial rule for the Kronecker coefficient g_{\lambda \mu \nu } when \mu is a hook shape by defining a set of colored Yamanouchi tableaux with cardinality g_{\lambda \mu \nu } in terms of a process called conversion. We give a characterization of colored Yamanouchi tableaux that does not rely on conversion, which leads to a simpler formulation and proof of the Kronecker rule for one hook shape.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/13692</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>A. ALGEBRA, NUMBER THEORY, AND COMBINATORICS</subject><ispartof>Proceedings of the American Mathematical Society, 2017-09, Vol.145 (9), p.3657-3664</ispartof><rights>Copyright 2017, American Mathematical Society</rights><rights>2017 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a319t-ddf2c6849eded28be5f619243157d5c56658355403e952540755ba85518c47bd3</citedby><cites>FETCH-LOGICAL-a319t-ddf2c6849eded28be5f619243157d5c56658355403e952540755ba85518c47bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/proc/2017-145-09/S0002-9939-2017-13692-2/S0002-9939-2017-13692-2.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/proc/2017-145-09/S0002-9939-2017-13692-2/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>69,314,777,781,23305,27905,27906,58219,58452,77587,77597</link.rule.ids></links><search><creatorcontrib>LIU, RICKY INI</creatorcontrib><title>A simplified Kronecker rule for one hook shape</title><title>Proceedings of the American Mathematical Society</title><description>Recently Blasiak has given a combinatorial rule for the Kronecker coefficient g_{\lambda \mu \nu } when \mu is a hook shape by defining a set of colored Yamanouchi tableaux with cardinality g_{\lambda \mu \nu } in terms of a process called conversion. We give a characterization of colored Yamanouchi tableaux that does not rely on conversion, which leads to a simpler formulation and proof of the Kronecker rule for one hook shape.</description><subject>A. ALGEBRA, NUMBER THEORY, AND COMBINATORICS</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9jztPwzAUhS0EEqGwsCN5YUFK60eu4ztWFS9RiQXmyLEdNW2DI7sM_HtcghiZju49n470EXLN2ZwzZIsxBrvgUqE4IQVnWpdKC3VKCsaYKBElnpOLlLb55FjVBZkvaeqHcd93vXf0JYYPb3c-0vi597QLkeYH3YSwo2ljRn9JzjqzT_7qN2fk_eH-bfVUrl8fn1fLdWkkx0PpXCes0hV6553QrYdOcRSV5FA7sKAUaAlQMekRRM4aoDUagGtb1a2TM3I37doYUoq-a8bYDyZ-NZw1R9PmaNr8mGb4ZoK36RDiH4nZUTKJub-dejOk_3a-AV0hWqk</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>LIU, RICKY INI</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170901</creationdate><title>A simplified Kronecker rule for one hook shape</title><author>LIU, RICKY INI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a319t-ddf2c6849eded28be5f619243157d5c56658355403e952540755ba85518c47bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>A. ALGEBRA, NUMBER THEORY, AND COMBINATORICS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LIU, RICKY INI</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LIU, RICKY INI</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simplified Kronecker rule for one hook shape</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2017-09-01</date><risdate>2017</risdate><volume>145</volume><issue>9</issue><spage>3657</spage><epage>3664</epage><pages>3657-3664</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>Recently Blasiak has given a combinatorial rule for the Kronecker coefficient g_{\lambda \mu \nu } when \mu is a hook shape by defining a set of colored Yamanouchi tableaux with cardinality g_{\lambda \mu \nu } in terms of a process called conversion. We give a characterization of colored Yamanouchi tableaux that does not rely on conversion, which leads to a simpler formulation and proof of the Kronecker rule for one hook shape.</abstract><pub>American Mathematical Society</pub><doi>10.1090/proc/13692</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9939 |
ispartof | Proceedings of the American Mathematical Society, 2017-09, Vol.145 (9), p.3657-3664 |
issn | 0002-9939 1088-6826 |
language | eng |
recordid | cdi_crossref_primary_10_1090_proc_13692 |
source | American Mathematical Society Publications - Open Access; JSTOR Archival Journals and Primary Sources Collection |
subjects | A. ALGEBRA, NUMBER THEORY, AND COMBINATORICS |
title | A simplified Kronecker rule for one hook shape |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T00%3A44%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simplified%20Kronecker%20rule%20for%20one%20hook%20shape&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=LIU,%20RICKY%20INI&rft.date=2017-09-01&rft.volume=145&rft.issue=9&rft.spage=3657&rft.epage=3664&rft.pages=3657-3664&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/13692&rft_dat=%3Cjstor_cross%3E90013039%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a319t-ddf2c6849eded28be5f619243157d5c56658355403e952540755ba85518c47bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=90013039&rfr_iscdi=true |