cited_by cdi_FETCH-LOGICAL-c319t-c72fa9280a1f504979946ce3dcf8ed38d3f03cd99a25074da272e33c90be9193
cites cdi_FETCH-LOGICAL-c319t-c72fa9280a1f504979946ce3dcf8ed38d3f03cd99a25074da272e33c90be9193
container_end_page 142
container_issue 1
container_start_page 129
container_title Quarterly of applied mathematics
container_volume 53
creator QIN, Y.
KALONI, P. N.
description
doi_str_mv 10.1090/qam/1315452
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_qam_1315452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43638050</jstor_id><sourcerecordid>43638050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c72fa9280a1f504979946ce3dcf8ed38d3f03cd99a25074da272e33c90be9193</originalsourceid><addsrcrecordid>eNo9j8FLwzAUxoMoWKcnz0IO3qTuJS9pm2M3ulmozegquFOJaQMbm5vNLv73VjZ2-nh8v_fBj5BHBq8MFIx_zG7MkEkh-RUJmJQ8FCKR1yQAQAxlpD5vyZ33m-EcWghIVOqyyMssreiyTid5kdcruqj0pMjeqZ7RlFa6Tuu8nNOFrvTHkhbpKqvuyY0zW989nHNE6llWT9_CQs_zaVqEFpk6hjbmziiegGFOglCxUiKyHbbWJV2LSYsO0LZKGS4hFq3hMe8QrYKvTjGFI_JymrX93vu-c82hX-9M_9swaP6Nm8G4ORsP9POJPhhvzdb15tuu_eUFBSJE8YA9nbCNP-77Sy0wwgQk4B81nVmp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>NONLINEAR STABILITY PROBLEM OF A ROTATING POROUS LAYER</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>American Mathematical Society Publications (Freely Accessible)</source><creator>QIN, Y. ; KALONI, P. N.</creator><creatorcontrib>QIN, Y. ; KALONI, P. N.</creatorcontrib><identifier>ISSN: 0033-569X</identifier><identifier>EISSN: 1552-4485</identifier><identifier>DOI: 10.1090/qam/1315452</identifier><identifier>CODEN: QAMAAY</identifier><language>eng</language><publisher>Providence, RI: Brown University</publisher><subject>Classical and quantum physics: mechanics and fields ; Classical mechanics of continuous media: general mathematical aspects ; Computational methods in fluid dynamics ; Convective flow ; Energy ; Energy methods ; Evolution equations ; Exact sciences and technology ; Flows through porous media ; Fluid dynamics ; Fluid mechanics: general mathematical aspects ; Function theory, analysis ; Fundamental areas of phenomenology (including applications) ; Mathematical methods in physics ; Nonhomogeneous flows ; Partial differential equations ; Physics ; Porosity ; Porous materials ; Rayleigh number ; Rotational flow and vorticity ; Sufficient conditions ; Temperature gradients ; Viscosity</subject><ispartof>Quarterly of applied mathematics, 1995-03, Vol.53 (1), p.129-142</ispartof><rights>1995 Brown University</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c72fa9280a1f504979946ce3dcf8ed38d3f03cd99a25074da272e33c90be9193</citedby><cites>FETCH-LOGICAL-c319t-c72fa9280a1f504979946ce3dcf8ed38d3f03cd99a25074da272e33c90be9193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43638050$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43638050$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,58237,58470</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3433067$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>QIN, Y.</creatorcontrib><creatorcontrib>KALONI, P. N.</creatorcontrib><title>NONLINEAR STABILITY PROBLEM OF A ROTATING POROUS LAYER</title><title>Quarterly of applied mathematics</title><subject>Classical and quantum physics: mechanics and fields</subject><subject>Classical mechanics of continuous media: general mathematical aspects</subject><subject>Computational methods in fluid dynamics</subject><subject>Convective flow</subject><subject>Energy</subject><subject>Energy methods</subject><subject>Evolution equations</subject><subject>Exact sciences and technology</subject><subject>Flows through porous media</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics: general mathematical aspects</subject><subject>Function theory, analysis</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical methods in physics</subject><subject>Nonhomogeneous flows</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Rayleigh number</subject><subject>Rotational flow and vorticity</subject><subject>Sufficient conditions</subject><subject>Temperature gradients</subject><subject>Viscosity</subject><issn>0033-569X</issn><issn>1552-4485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNo9j8FLwzAUxoMoWKcnz0IO3qTuJS9pm2M3ulmozegquFOJaQMbm5vNLv73VjZ2-nh8v_fBj5BHBq8MFIx_zG7MkEkh-RUJmJQ8FCKR1yQAQAxlpD5vyZ33m-EcWghIVOqyyMssreiyTid5kdcruqj0pMjeqZ7RlFa6Tuu8nNOFrvTHkhbpKqvuyY0zW989nHNE6llWT9_CQs_zaVqEFpk6hjbmziiegGFOglCxUiKyHbbWJV2LSYsO0LZKGS4hFq3hMe8QrYKvTjGFI_JymrX93vu-c82hX-9M_9swaP6Nm8G4ORsP9POJPhhvzdb15tuu_eUFBSJE8YA9nbCNP-77Sy0wwgQk4B81nVmp</recordid><startdate>19950301</startdate><enddate>19950301</enddate><creator>QIN, Y.</creator><creator>KALONI, P. N.</creator><general>Brown University</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19950301</creationdate><title>NONLINEAR STABILITY PROBLEM OF A ROTATING POROUS LAYER</title><author>QIN, Y. ; KALONI, P. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c72fa9280a1f504979946ce3dcf8ed38d3f03cd99a25074da272e33c90be9193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Classical and quantum physics: mechanics and fields</topic><topic>Classical mechanics of continuous media: general mathematical aspects</topic><topic>Computational methods in fluid dynamics</topic><topic>Convective flow</topic><topic>Energy</topic><topic>Energy methods</topic><topic>Evolution equations</topic><topic>Exact sciences and technology</topic><topic>Flows through porous media</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics: general mathematical aspects</topic><topic>Function theory, analysis</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical methods in physics</topic><topic>Nonhomogeneous flows</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Rayleigh number</topic><topic>Rotational flow and vorticity</topic><topic>Sufficient conditions</topic><topic>Temperature gradients</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>QIN, Y.</creatorcontrib><creatorcontrib>KALONI, P. N.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Quarterly of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>QIN, Y.</au><au>KALONI, P. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NONLINEAR STABILITY PROBLEM OF A ROTATING POROUS LAYER</atitle><jtitle>Quarterly of applied mathematics</jtitle><date>1995-03-01</date><risdate>1995</risdate><volume>53</volume><issue>1</issue><spage>129</spage><epage>142</epage><pages>129-142</pages><issn>0033-569X</issn><eissn>1552-4485</eissn><coden>QAMAAY</coden><cop>Providence, RI</cop><pub>Brown University</pub><doi>10.1090/qam/1315452</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0033-569X
ispartof Quarterly of applied mathematics, 1995-03, Vol.53 (1), p.129-142
issn 0033-569X
1552-4485
language eng
recordid cdi_crossref_primary_10_1090_qam_1315452
source JSTOR Archival Journals and Primary Sources Collection; American Mathematical Society Publications (Freely Accessible)
subjects Classical and quantum physics: mechanics and fields
Classical mechanics of continuous media: general mathematical aspects
Computational methods in fluid dynamics
Convective flow
Energy
Energy methods
Evolution equations
Exact sciences and technology
Flows through porous media
Fluid dynamics
Fluid mechanics: general mathematical aspects
Function theory, analysis
Fundamental areas of phenomenology (including applications)
Mathematical methods in physics
Nonhomogeneous flows
Partial differential equations
Physics
Porosity
Porous materials
Rayleigh number
Rotational flow and vorticity
Sufficient conditions
Temperature gradients
Viscosity
title NONLINEAR STABILITY PROBLEM OF A ROTATING POROUS LAYER
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A25%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NONLINEAR%20STABILITY%20PROBLEM%20OF%20A%20ROTATING%20POROUS%20LAYER&rft.jtitle=Quarterly%20of%20applied%20mathematics&rft.au=QIN,%20Y.&rft.date=1995-03-01&rft.volume=53&rft.issue=1&rft.spage=129&rft.epage=142&rft.pages=129-142&rft.issn=0033-569X&rft.eissn=1552-4485&rft.coden=QAMAAY&rft_id=info:doi/10.1090/qam/1315452&rft_dat=%3Cjstor_cross%3E43638050%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-c72fa9280a1f504979946ce3dcf8ed38d3f03cd99a25074da272e33c90be9193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43638050&rfr_iscdi=true