Loading…
Exponential stability of matrix-valued Markov chains via nonignorable periodic data
uniformly exponentially stable if there exist two constants C]]>>>č
Saved in:
Published in: | Transactions of the American Mathematical Society 2017-08, Vol.369 (8), p.5271-5292 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a280t-e9f8cd02d50826f8e53fbde8a10c84509279e67e3b21afac27565cfdad2e97013 |
---|---|
cites | cdi_FETCH-LOGICAL-a280t-e9f8cd02d50826f8e53fbde8a10c84509279e67e3b21afac27565cfdad2e97013 |
container_end_page | 5292 |
container_issue | 8 |
container_start_page | 5271 |
container_title | Transactions of the American Mathematical Society |
container_volume | 369 |
creator | DAI, XIONGPING HUANG, TINGWEN HUANG, YU |
description | uniformly exponentially stable if there exist two constants C]]>>>č |
doi_str_mv | 10.1090/tran/6912 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_6912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90006907</jstor_id><sourcerecordid>90006907</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-e9f8cd02d50826f8e53fbde8a10c84509279e67e3b21afac27565cfdad2e97013</originalsourceid><addsrcrecordid>eNp9kL1OwzAYRS0EEqUw8ABIHlgYQj-7jWOPqCo_UhEDMEdf_AMuaVzZJmrfnlRFjExXV_foDoeQSwa3DBRMcsRuIhTjR2TEQMpCyBKOyQgAeKHUrDolZymthgozKUbkdbHdhM522WNLU8bGtz7vaHB0jTn6bdFj-20Nfcb4FXqqP9F3ifYeaRc6_9GFiE1r6cZGH4zX1GDGc3LisE324jfH5P1-8TZ_LJYvD0_zu2WBXEIurHJSG-CmBMmFk7acusZYiQy0nJWgeKWsqOy04Qwdal6VotTOoOFWVcCmY3Jz-NUxpBStqzfRrzHuagb13ka9t1HvbQzs1YFdpRziH6gGD0JBNezXhx3X6Z-bHw8qaiM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Exponential stability of matrix-valued Markov chains via nonignorable periodic data</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>American Mathematical Society Publications</source><creator>DAI, XIONGPING ; HUANG, TINGWEN ; HUANG, YU</creator><creatorcontrib>DAI, XIONGPING ; HUANG, TINGWEN ; HUANG, YU</creatorcontrib><description>uniformly exponentially stable if there exist two constants C]]>><< and \boldsymbol {\xi } is called if there exist two random variables C(\omega )]]>><< In this paper, we characterize the exponential stabilities of \boldsymbol {\xi } via its whenever \boldsymbol {\xi } has a constant transition binary matrix. As an application, we construct a Lipschitz continuous \mathrm {SL}(2,\mathbb{R})-cocycle driven by a Markov chain with 2-points state space, which is nonuniformly but not uniformly hyperbolic and which has constant Oselede]]>č</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/6912</identifier><language>eng</language><publisher>American Mathematical Society</publisher><ispartof>Transactions of the American Mathematical Society, 2017-08, Vol.369 (8), p.5271-5292</ispartof><rights>Copyright 2017, American Mathematical Society</rights><rights>2017 American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-e9f8cd02d50826f8e53fbde8a10c84509279e67e3b21afac27565cfdad2e97013</citedby><cites>FETCH-LOGICAL-a280t-e9f8cd02d50826f8e53fbde8a10c84509279e67e3b21afac27565cfdad2e97013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/tran/2017-369-08/S0002-9947-2017-06912-9/S0002-9947-2017-06912-9.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/tran/2017-369-08/S0002-9947-2017-06912-9/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,780,784,23328,27924,27925,58238,58471,77836,77846</link.rule.ids></links><search><creatorcontrib>DAI, XIONGPING</creatorcontrib><creatorcontrib>HUANG, TINGWEN</creatorcontrib><creatorcontrib>HUANG, YU</creatorcontrib><title>Exponential stability of matrix-valued Markov chains via nonignorable periodic data</title><title>Transactions of the American Mathematical Society</title><description>uniformly exponentially stable if there exist two constants C]]>><< and \boldsymbol {\xi } is called if there exist two random variables C(\omega )]]>><< In this paper, we characterize the exponential stabilities of \boldsymbol {\xi } via its whenever \boldsymbol {\xi } has a constant transition binary matrix. As an application, we construct a Lipschitz continuous \mathrm {SL}(2,\mathbb{R})-cocycle driven by a Markov chain with 2-points state space, which is nonuniformly but not uniformly hyperbolic and which has constant Oselede]]>č</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAYRS0EEqUw8ABIHlgYQj-7jWOPqCo_UhEDMEdf_AMuaVzZJmrfnlRFjExXV_foDoeQSwa3DBRMcsRuIhTjR2TEQMpCyBKOyQgAeKHUrDolZymthgozKUbkdbHdhM522WNLU8bGtz7vaHB0jTn6bdFj-20Nfcb4FXqqP9F3ifYeaRc6_9GFiE1r6cZGH4zX1GDGc3LisE324jfH5P1-8TZ_LJYvD0_zu2WBXEIurHJSG-CmBMmFk7acusZYiQy0nJWgeKWsqOy04Qwdal6VotTOoOFWVcCmY3Jz-NUxpBStqzfRrzHuagb13ka9t1HvbQzs1YFdpRziH6gGD0JBNezXhx3X6Z-bHw8qaiM</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>DAI, XIONGPING</creator><creator>HUANG, TINGWEN</creator><creator>HUANG, YU</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170801</creationdate><title>Exponential stability of matrix-valued Markov chains via nonignorable periodic data</title><author>DAI, XIONGPING ; HUANG, TINGWEN ; HUANG, YU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-e9f8cd02d50826f8e53fbde8a10c84509279e67e3b21afac27565cfdad2e97013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DAI, XIONGPING</creatorcontrib><creatorcontrib>HUANG, TINGWEN</creatorcontrib><creatorcontrib>HUANG, YU</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DAI, XIONGPING</au><au>HUANG, TINGWEN</au><au>HUANG, YU</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential stability of matrix-valued Markov chains via nonignorable periodic data</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2017-08-01</date><risdate>2017</risdate><volume>369</volume><issue>8</issue><spage>5271</spage><epage>5292</epage><pages>5271-5292</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>uniformly exponentially stable if there exist two constants C]]>><< and \boldsymbol {\xi } is called if there exist two random variables C(\omega )]]>><< In this paper, we characterize the exponential stabilities of \boldsymbol {\xi } via its whenever \boldsymbol {\xi } has a constant transition binary matrix. As an application, we construct a Lipschitz continuous \mathrm {SL}(2,\mathbb{R})-cocycle driven by a Markov chain with 2-points state space, which is nonuniformly but not uniformly hyperbolic and which has constant Oselede]]>č</abstract><pub>American Mathematical Society</pub><doi>10.1090/tran/6912</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9947 |
ispartof | Transactions of the American Mathematical Society, 2017-08, Vol.369 (8), p.5271-5292 |
issn | 0002-9947 1088-6850 |
language | eng |
recordid | cdi_crossref_primary_10_1090_tran_6912 |
source | JSTOR Archival Journals and Primary Sources Collection; American Mathematical Society Publications |
title | Exponential stability of matrix-valued Markov chains via nonignorable periodic data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A40%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20stability%20of%20matrix-valued%20Markov%20chains%20via%20nonignorable%20periodic%20data&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=DAI,%20XIONGPING&rft.date=2017-08-01&rft.volume=369&rft.issue=8&rft.spage=5271&rft.epage=5292&rft.pages=5271-5292&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/6912&rft_dat=%3Cjstor_cross%3E90006907%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a280t-e9f8cd02d50826f8e53fbde8a10c84509279e67e3b21afac27565cfdad2e97013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=90006907&rfr_iscdi=true |