Loading…
Eigenvalues and eigenfunctions of double layer potentials
where ds_y is the line or surface element and \nu _y is the outer normal derivative on \partial \Omega . It is known that K is a compact operator on L^2(\partial \Omega ) and consists of at most a countable number of eigenvalues, with 0 as the only possible limit point. This paper aims to establish...
Saved in:
Published in: | Transactions of the American Mathematical Society 2017-11, Vol.369 (11), p.8037-8059 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a280t-2d4a6f5e2c394b91593ca7e7fca794ee7286cb9491ac916be1b8bf00ffd4357c3 |
---|---|
cites | |
container_end_page | 8059 |
container_issue | 11 |
container_start_page | 8037 |
container_title | Transactions of the American Mathematical Society |
container_volume | 369 |
creator | MIYANISHI, YOSHIHISA SUZUKI, TAKASHI |
description | where ds_y is the line or surface element and \nu _y is the outer normal derivative on \partial \Omega . It is known that K is a compact operator on L^2(\partial \Omega ) and consists of at most a countable number of eigenvalues, with 0 as the only possible limit point. This paper aims to establish some relationships among the eigenvalues, the eigenfunctions, and the geometry of \partial \Omega .]]> |
doi_str_mv | 10.1090/tran/6913 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_6913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90014139</jstor_id><sourcerecordid>90014139</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-2d4a6f5e2c394b91593ca7e7fca794ee7286cb9491ac916be1b8bf00ffd4357c3</originalsourceid><addsrcrecordid>eNp9j09LxDAUxIMoWFcPfgChBy8e6r40aZp3lGX9Awte9FyS9EW6dNslaYX99rZUPHqZYZgfA8PYLYdHDgjrIZhurZCLM5Zw0DpTuoBzlgBAniHK8pJdxbifIkitEobb5ou6b9OOFFPT1SnN2Y-dG5q-i2nv07ofbUtpa04U0mM_UDc0po3X7MJPRje_vmKfz9uPzWu2e3952zztMpNrGLK8lkb5gnInUFrkBQpnSir9pCiJylwrZ1EiNw65ssStth7A-1qKonRixR6WXRf6GAP56hiagwmnikM1f67mz9X8eWLvFnYfhz78gQjAJRc49fdLbw7xn5kf6hdgnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Eigenvalues and eigenfunctions of double layer potentials</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>American Mathematical Society Publications</source><creator>MIYANISHI, YOSHIHISA ; SUZUKI, TAKASHI</creator><creatorcontrib>MIYANISHI, YOSHIHISA ; SUZUKI, TAKASHI</creatorcontrib><description>where ds_y is the line or surface element and \nu _y is the outer normal derivative on \partial \Omega . It is known that K is a compact operator on L^2(\partial \Omega ) and consists of at most a countable number of eigenvalues, with 0 as the only possible limit point. This paper aims to establish some relationships among the eigenvalues, the eigenfunctions, and the geometry of \partial \Omega .]]></description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/6913</identifier><language>eng</language><publisher>American Mathematical Society</publisher><ispartof>Transactions of the American Mathematical Society, 2017-11, Vol.369 (11), p.8037-8059</ispartof><rights>Copyright 2017, American Mathematical Society</rights><rights>2017 American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-2d4a6f5e2c394b91593ca7e7fca794ee7286cb9491ac916be1b8bf00ffd4357c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/tran/2017-369-11/S0002-9947-2017-06913-0/S0002-9947-2017-06913-0.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/tran/2017-369-11/S0002-9947-2017-06913-0/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,780,784,23328,27924,27925,58238,58471,77836,77846</link.rule.ids></links><search><creatorcontrib>MIYANISHI, YOSHIHISA</creatorcontrib><creatorcontrib>SUZUKI, TAKASHI</creatorcontrib><title>Eigenvalues and eigenfunctions of double layer potentials</title><title>Transactions of the American Mathematical Society</title><description>where ds_y is the line or surface element and \nu _y is the outer normal derivative on \partial \Omega . It is known that K is a compact operator on L^2(\partial \Omega ) and consists of at most a countable number of eigenvalues, with 0 as the only possible limit point. This paper aims to establish some relationships among the eigenvalues, the eigenfunctions, and the geometry of \partial \Omega .]]></description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9j09LxDAUxIMoWFcPfgChBy8e6r40aZp3lGX9Awte9FyS9EW6dNslaYX99rZUPHqZYZgfA8PYLYdHDgjrIZhurZCLM5Zw0DpTuoBzlgBAniHK8pJdxbifIkitEobb5ou6b9OOFFPT1SnN2Y-dG5q-i2nv07ofbUtpa04U0mM_UDc0po3X7MJPRje_vmKfz9uPzWu2e3952zztMpNrGLK8lkb5gnInUFrkBQpnSir9pCiJylwrZ1EiNw65ssStth7A-1qKonRixR6WXRf6GAP56hiagwmnikM1f67mz9X8eWLvFnYfhz78gQjAJRc49fdLbw7xn5kf6hdgnA</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>MIYANISHI, YOSHIHISA</creator><creator>SUZUKI, TAKASHI</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171101</creationdate><title>Eigenvalues and eigenfunctions of double layer potentials</title><author>MIYANISHI, YOSHIHISA ; SUZUKI, TAKASHI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-2d4a6f5e2c394b91593ca7e7fca794ee7286cb9491ac916be1b8bf00ffd4357c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MIYANISHI, YOSHIHISA</creatorcontrib><creatorcontrib>SUZUKI, TAKASHI</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MIYANISHI, YOSHIHISA</au><au>SUZUKI, TAKASHI</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eigenvalues and eigenfunctions of double layer potentials</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2017-11-01</date><risdate>2017</risdate><volume>369</volume><issue>11</issue><spage>8037</spage><epage>8059</epage><pages>8037-8059</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>where ds_y is the line or surface element and \nu _y is the outer normal derivative on \partial \Omega . It is known that K is a compact operator on L^2(\partial \Omega ) and consists of at most a countable number of eigenvalues, with 0 as the only possible limit point. This paper aims to establish some relationships among the eigenvalues, the eigenfunctions, and the geometry of \partial \Omega .]]></abstract><pub>American Mathematical Society</pub><doi>10.1090/tran/6913</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9947 |
ispartof | Transactions of the American Mathematical Society, 2017-11, Vol.369 (11), p.8037-8059 |
issn | 0002-9947 1088-6850 |
language | eng |
recordid | cdi_crossref_primary_10_1090_tran_6913 |
source | JSTOR Archival Journals and Primary Sources Collection; American Mathematical Society Publications |
title | Eigenvalues and eigenfunctions of double layer potentials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A22%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eigenvalues%20and%20eigenfunctions%20of%20double%20layer%20potentials&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=MIYANISHI,%20YOSHIHISA&rft.date=2017-11-01&rft.volume=369&rft.issue=11&rft.spage=8037&rft.epage=8059&rft.pages=8037-8059&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/6913&rft_dat=%3Cjstor_cross%3E90014139%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a280t-2d4a6f5e2c394b91593ca7e7fca794ee7286cb9491ac916be1b8bf00ffd4357c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=90014139&rfr_iscdi=true |