Loading…

Perfectly ordered quasicrystals and the Littlewood conjecture

Linearly repetitive cut and project sets are mathematical models for perfectly ordered quasicrystals. In a previous paper we presented a characterization of linearly repetitive cut and project sets. In this paper we extend the classical definition of linear repetitivity to try to discover whether or...

Full description

Saved in:
Bibliographic Details
Published in:Transactions of the American Mathematical Society 2018-07, Vol.370 (7), p.4975-4992
Main Authors: HAYNES, ALAN, KOIVUSALO, HENNA, WALTON, JAMES
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4992
container_issue 7
container_start_page 4975
container_title Transactions of the American Mathematical Society
container_volume 370
creator HAYNES, ALAN
KOIVUSALO, HENNA
WALTON, JAMES
description Linearly repetitive cut and project sets are mathematical models for perfectly ordered quasicrystals. In a previous paper we presented a characterization of linearly repetitive cut and project sets. In this paper we extend the classical definition of linear repetitivity to try to discover whether or not there is a natural class of cut and project sets which are models for quasicrystals which are better than `perfectly ordered'. In the positive direction, we demonstrate an uncountable collection of such sets (in fact, a collection with large Hausdorff dimension) for every choice of dimension of the physical space. On the other hand, we show that, for many natural versions of the problems under consideration, the existence of these sets turns out to be equivalent to the negation of a well-known open problem in Diophantine approximation, the Littlewood conjecture.
doi_str_mv 10.1090/tran/7136
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_7136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90021164</jstor_id><sourcerecordid>90021164</sourcerecordid><originalsourceid>FETCH-LOGICAL-a275t-1469a2e123b9b34cd29c3e80f913fd630e4c4053b128ab2974d5889a358ccf543</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoWEcXPoDQhRsXdU4uTZOFCxnGCxR0oeuS5oItnYkmGaRvb0vFpavD4Xzng_9H6BLDLQYJ6xTUfl1hyo9QhkGIgosSjlEGAKSQklWn6CzGflqBCZ6hu1cbnNVpGHMfjA3W5F8HFTsdxpjUEHO1N3n6sHndpTTYb-9Nrv2-n14OwZ6jEzdB9uJ3rtD7w_Zt81TUL4_Pm_u6UKQqU4EZl4pYTGgrW8q0IVJTK8BJTJ3hFCzTDEraYiJUS2TFTCmEVLQUWruS0RW6Wbw6-BiDdc1n6HYqjA2GZs7dzLmbOffEXi1sH5MPf6CcCsCYz67r5a528R_ND0pkYSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Perfectly ordered quasicrystals and the Littlewood conjecture</title><source>JSTOR-E-Journals</source><source>American Mathematical Society Journals</source><creator>HAYNES, ALAN ; KOIVUSALO, HENNA ; WALTON, JAMES</creator><creatorcontrib>HAYNES, ALAN ; KOIVUSALO, HENNA ; WALTON, JAMES</creatorcontrib><description>Linearly repetitive cut and project sets are mathematical models for perfectly ordered quasicrystals. In a previous paper we presented a characterization of linearly repetitive cut and project sets. In this paper we extend the classical definition of linear repetitivity to try to discover whether or not there is a natural class of cut and project sets which are models for quasicrystals which are better than `perfectly ordered'. In the positive direction, we demonstrate an uncountable collection of such sets (in fact, a collection with large Hausdorff dimension) for every choice of dimension of the physical space. On the other hand, we show that, for many natural versions of the problems under consideration, the existence of these sets turns out to be equivalent to the negation of a well-known open problem in Diophantine approximation, the Littlewood conjecture.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/7136</identifier><language>eng</language><publisher>American Mathematical Society</publisher><ispartof>Transactions of the American Mathematical Society, 2018-07, Vol.370 (7), p.4975-4992</ispartof><rights>Copyright 2018, American Mathematical Society</rights><rights>2018 by the American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/tran/2018-370-07/S0002-9947-2018-07136-7/S0002-9947-2018-07136-7.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/tran/2018-370-07/S0002-9947-2018-07136-7/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,780,784,23327,27923,27924,58237,58470,77707,77717</link.rule.ids></links><search><creatorcontrib>HAYNES, ALAN</creatorcontrib><creatorcontrib>KOIVUSALO, HENNA</creatorcontrib><creatorcontrib>WALTON, JAMES</creatorcontrib><title>Perfectly ordered quasicrystals and the Littlewood conjecture</title><title>Transactions of the American Mathematical Society</title><description>Linearly repetitive cut and project sets are mathematical models for perfectly ordered quasicrystals. In a previous paper we presented a characterization of linearly repetitive cut and project sets. In this paper we extend the classical definition of linear repetitivity to try to discover whether or not there is a natural class of cut and project sets which are models for quasicrystals which are better than `perfectly ordered'. In the positive direction, we demonstrate an uncountable collection of such sets (in fact, a collection with large Hausdorff dimension) for every choice of dimension of the physical space. On the other hand, we show that, for many natural versions of the problems under consideration, the existence of these sets turns out to be equivalent to the negation of a well-known open problem in Diophantine approximation, the Littlewood conjecture.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoWEcXPoDQhRsXdU4uTZOFCxnGCxR0oeuS5oItnYkmGaRvb0vFpavD4Xzng_9H6BLDLQYJ6xTUfl1hyo9QhkGIgosSjlEGAKSQklWn6CzGflqBCZ6hu1cbnNVpGHMfjA3W5F8HFTsdxpjUEHO1N3n6sHndpTTYb-9Nrv2-n14OwZ6jEzdB9uJ3rtD7w_Zt81TUL4_Pm_u6UKQqU4EZl4pYTGgrW8q0IVJTK8BJTJ3hFCzTDEraYiJUS2TFTCmEVLQUWruS0RW6Wbw6-BiDdc1n6HYqjA2GZs7dzLmbOffEXi1sH5MPf6CcCsCYz67r5a528R_ND0pkYSQ</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>HAYNES, ALAN</creator><creator>KOIVUSALO, HENNA</creator><creator>WALTON, JAMES</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180701</creationdate><title>Perfectly ordered quasicrystals and the Littlewood conjecture</title><author>HAYNES, ALAN ; KOIVUSALO, HENNA ; WALTON, JAMES</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a275t-1469a2e123b9b34cd29c3e80f913fd630e4c4053b128ab2974d5889a358ccf543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HAYNES, ALAN</creatorcontrib><creatorcontrib>KOIVUSALO, HENNA</creatorcontrib><creatorcontrib>WALTON, JAMES</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HAYNES, ALAN</au><au>KOIVUSALO, HENNA</au><au>WALTON, JAMES</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perfectly ordered quasicrystals and the Littlewood conjecture</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2018-07-01</date><risdate>2018</risdate><volume>370</volume><issue>7</issue><spage>4975</spage><epage>4992</epage><pages>4975-4992</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>Linearly repetitive cut and project sets are mathematical models for perfectly ordered quasicrystals. In a previous paper we presented a characterization of linearly repetitive cut and project sets. In this paper we extend the classical definition of linear repetitivity to try to discover whether or not there is a natural class of cut and project sets which are models for quasicrystals which are better than `perfectly ordered'. In the positive direction, we demonstrate an uncountable collection of such sets (in fact, a collection with large Hausdorff dimension) for every choice of dimension of the physical space. On the other hand, we show that, for many natural versions of the problems under consideration, the existence of these sets turns out to be equivalent to the negation of a well-known open problem in Diophantine approximation, the Littlewood conjecture.</abstract><pub>American Mathematical Society</pub><doi>10.1090/tran/7136</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9947
ispartof Transactions of the American Mathematical Society, 2018-07, Vol.370 (7), p.4975-4992
issn 0002-9947
1088-6850
language eng
recordid cdi_crossref_primary_10_1090_tran_7136
source JSTOR-E-Journals; American Mathematical Society Journals
title Perfectly ordered quasicrystals and the Littlewood conjecture
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A25%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perfectly%20ordered%20quasicrystals%20and%20the%20Littlewood%20conjecture&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=HAYNES,%20ALAN&rft.date=2018-07-01&rft.volume=370&rft.issue=7&rft.spage=4975&rft.epage=4992&rft.pages=4975-4992&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/7136&rft_dat=%3Cjstor_cross%3E90021164%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a275t-1469a2e123b9b34cd29c3e80f913fd630e4c4053b128ab2974d5889a358ccf543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=90021164&rfr_iscdi=true