Loading…
Extrapolation and interpolation in generalized Orlicz spaces
We prove versions of the Rubio de Francia extrapolation theorem in generalized Orlicz spaces. As a consequence, we obtain boundedness results for several classical operators as well as a Sobolev inequality in this setting. We also study complex interpolation in the same setting and use it to derive...
Saved in:
Published in: | Transactions of the American Mathematical Society 2018-06, Vol.370 (6), p.4323-4349 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a381t-7cbc923176e5b0126d7a9cfa588cbda4f48004ccc2eb8c0c8cb278a28a5176693 |
---|---|
cites | |
container_end_page | 4349 |
container_issue | 6 |
container_start_page | 4323 |
container_title | Transactions of the American Mathematical Society |
container_volume | 370 |
creator | David Cruz-Uribe Peter Hästö |
description | We prove versions of the Rubio de Francia extrapolation theorem in generalized Orlicz spaces. As a consequence, we obtain boundedness results for several classical operators as well as a Sobolev inequality in this setting. We also study complex interpolation in the same setting and use it to derive a compact embedding theorem. Our results include as special cases classical Lebesgue and Sobolev space estimates and their variable exponent and double phase growth analogs. |
doi_str_mv | 10.1090/tran/7155 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_7155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90020274</jstor_id><sourcerecordid>90020274</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-7cbc923176e5b0126d7a9cfa588cbda4f48004ccc2eb8c0c8cb278a28a5176693</originalsourceid><addsrcrecordid>eNp9j01LxDAQhoMoWFcP_gChBy8e6k7SpknAiyzrByzsRc9lOk2lSzctSQ-6v96UlT16GmbeD-Zh7JbDIwcDy8mjWyou5RlLOGidlVrCOUsAQGTGFOqSXYWwiysUukzY0_o7Rsahx6kbXIquSTs3WX-6dC79ss567LuDbdKt7zs6pGFEsuGaXbTYB3vzNxfs82X9sXrLNtvX99XzJsNc8ylTVJMROVellTVwUTYKDbUotaa6waItdPyGiIStNQHFq1AahUYZM6XJF-zh2Et-CMHbthp9t0f_U3GoZuxqxq5m7Oi9O3p3YRr8yWgiPwhVRP3-qOM-_FPzC1BvYZI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Extrapolation and interpolation in generalized Orlicz spaces</title><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><source>American Mathematical Society</source><creator>David Cruz-Uribe ; Peter Hästö</creator><creatorcontrib>David Cruz-Uribe ; Peter Hästö</creatorcontrib><description>We prove versions of the Rubio de Francia extrapolation theorem in generalized Orlicz spaces. As a consequence, we obtain boundedness results for several classical operators as well as a Sobolev inequality in this setting. We also study complex interpolation in the same setting and use it to derive a compact embedding theorem. Our results include as special cases classical Lebesgue and Sobolev space estimates and their variable exponent and double phase growth analogs.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/7155</identifier><language>eng</language><publisher>American Mathematical Society</publisher><ispartof>Transactions of the American Mathematical Society, 2018-06, Vol.370 (6), p.4323-4349</ispartof><rights>Copyright 2018, American Mathematical Society</rights><rights>2018 by the American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a381t-7cbc923176e5b0126d7a9cfa588cbda4f48004ccc2eb8c0c8cb278a28a5176693</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/tran/2018-370-06/S0002-9947-2018-07155-0/S0002-9947-2018-07155-0.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/tran/2018-370-06/S0002-9947-2018-07155-0/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,780,784,23326,27922,27923,58236,58469,77606,77616</link.rule.ids></links><search><creatorcontrib>David Cruz-Uribe</creatorcontrib><creatorcontrib>Peter Hästö</creatorcontrib><title>Extrapolation and interpolation in generalized Orlicz spaces</title><title>Transactions of the American Mathematical Society</title><description>We prove versions of the Rubio de Francia extrapolation theorem in generalized Orlicz spaces. As a consequence, we obtain boundedness results for several classical operators as well as a Sobolev inequality in this setting. We also study complex interpolation in the same setting and use it to derive a compact embedding theorem. Our results include as special cases classical Lebesgue and Sobolev space estimates and their variable exponent and double phase growth analogs.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9j01LxDAQhoMoWFcP_gChBy8e6k7SpknAiyzrByzsRc9lOk2lSzctSQ-6v96UlT16GmbeD-Zh7JbDIwcDy8mjWyou5RlLOGidlVrCOUsAQGTGFOqSXYWwiysUukzY0_o7Rsahx6kbXIquSTs3WX-6dC79ss567LuDbdKt7zs6pGFEsuGaXbTYB3vzNxfs82X9sXrLNtvX99XzJsNc8ylTVJMROVellTVwUTYKDbUotaa6waItdPyGiIStNQHFq1AahUYZM6XJF-zh2Et-CMHbthp9t0f_U3GoZuxqxq5m7Oi9O3p3YRr8yWgiPwhVRP3-qOM-_FPzC1BvYZI</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>David Cruz-Uribe</creator><creator>Peter Hästö</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180601</creationdate><title>Extrapolation and interpolation in generalized Orlicz spaces</title><author>David Cruz-Uribe ; Peter Hästö</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-7cbc923176e5b0126d7a9cfa588cbda4f48004ccc2eb8c0c8cb278a28a5176693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>David Cruz-Uribe</creatorcontrib><creatorcontrib>Peter Hästö</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>David Cruz-Uribe</au><au>Peter Hästö</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extrapolation and interpolation in generalized Orlicz spaces</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2018-06-01</date><risdate>2018</risdate><volume>370</volume><issue>6</issue><spage>4323</spage><epage>4349</epage><pages>4323-4349</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>We prove versions of the Rubio de Francia extrapolation theorem in generalized Orlicz spaces. As a consequence, we obtain boundedness results for several classical operators as well as a Sobolev inequality in this setting. We also study complex interpolation in the same setting and use it to derive a compact embedding theorem. Our results include as special cases classical Lebesgue and Sobolev space estimates and their variable exponent and double phase growth analogs.</abstract><pub>American Mathematical Society</pub><doi>10.1090/tran/7155</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9947 |
ispartof | Transactions of the American Mathematical Society, 2018-06, Vol.370 (6), p.4323-4349 |
issn | 0002-9947 1088-6850 |
language | eng |
recordid | cdi_crossref_primary_10_1090_tran_7155 |
source | JSTOR Archival Journals and Primary Sources Collection【Remote access available】; American Mathematical Society |
title | Extrapolation and interpolation in generalized Orlicz spaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A32%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extrapolation%20and%20interpolation%20in%20generalized%20Orlicz%20spaces&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=David%20Cruz-Uribe&rft.date=2018-06-01&rft.volume=370&rft.issue=6&rft.spage=4323&rft.epage=4349&rft.pages=4323-4349&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/7155&rft_dat=%3Cjstor_cross%3E90020274%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a381t-7cbc923176e5b0126d7a9cfa588cbda4f48004ccc2eb8c0c8cb278a28a5176693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=90020274&rfr_iscdi=true |