Loading…

Minimal surfaces in minimally convex domains

In this paper, we prove that every conformal minimal immersion of a compact bordered Riemann surface M into a minimally convex domain D\subset \mathbb{R}^3 can be approximated uniformly on compacts in \mathring M=M\setminus bM by proper complete conformal minimal immersions \mathring M\to D. We also...

Full description

Saved in:
Bibliographic Details
Published in:Transactions of the American Mathematical Society 2019-02, Vol.371 (3), p.1735-1770
Main Authors: Antonio Alarcón, Barbara Drinovec Drnovšek, Franc Forstnerič, Francisco J. López
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a315t-e4db51f6d2952d2ae1fbfa9339e8057103a8ac398db1097c8232257c06dafc4a3
cites
container_end_page 1770
container_issue 3
container_start_page 1735
container_title Transactions of the American Mathematical Society
container_volume 371
creator Antonio Alarcón
Barbara Drinovec Drnovšek
Franc Forstnerič
Francisco J. López
description In this paper, we prove that every conformal minimal immersion of a compact bordered Riemann surface M into a minimally convex domain D\subset \mathbb{R}^3 can be approximated uniformly on compacts in \mathring M=M\setminus bM by proper complete conformal minimal immersions \mathring M\to D. We also obtain a rigidity theorem for complete immersed minimal surfaces of finite total curvature contained in a minimally convex domain in \mathbb{R}^3, and we characterize the minimal surface hull of a compact set K in \mathbb{R}^n for any n\ge 3 by sequences of conformal minimal discs whose boundaries converge to K in the measure theoretic sense.
doi_str_mv 10.1090/tran/7331
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_7331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26562659</jstor_id><sourcerecordid>26562659</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-e4db51f6d2952d2ae1fbfa9339e8057103a8ac398db1097c8232257c06dafc4a3</originalsourceid><addsrcrecordid>eNp9j0tLxDAUhYMoWEcX_gChCzeCdW6SJk2WMowPGHGj63KbB3ToQ5Iqzr83peLSxeVy7zkczkfIJYU7ChrWU8BhXXFOj0hGQalCKgHHJAMAVmhdVqfkLMZ9OqFUMiO3L-3Q9tjl8TN4NC7m7ZD3y6875GYcvtx3bsce2yGekxOPXXQXv3tF3h-2b5unYvf6-Ly53xXIqZgKV9pGUC8t04JZho76xqPmXDsFoqLAUaHhWtkmda6MYpwxURmQFr0pka_IzZJrwhhjcL7-CKlQONQU6hmznjHrGTN5rxbvPk5j-DMyKWQanfTrRcc-_hPzA6zrWvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Minimal surfaces in minimally convex domains</title><source>American Mathematical Society Journals</source><creator>Antonio Alarcón ; Barbara Drinovec Drnovšek ; Franc Forstnerič ; Francisco J. López</creator><creatorcontrib>Antonio Alarcón ; Barbara Drinovec Drnovšek ; Franc Forstnerič ; Francisco J. López</creatorcontrib><description>In this paper, we prove that every conformal minimal immersion of a compact bordered Riemann surface M into a minimally convex domain D\subset \mathbb{R}^3 can be approximated uniformly on compacts in \mathring M=M\setminus bM by proper complete conformal minimal immersions \mathring M\to D. We also obtain a rigidity theorem for complete immersed minimal surfaces of finite total curvature contained in a minimally convex domain in \mathbb{R}^3, and we characterize the minimal surface hull of a compact set K in \mathbb{R}^n for any n\ge 3 by sequences of conformal minimal discs whose boundaries converge to K in the measure theoretic sense.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/7331</identifier><language>eng</language><publisher>American Mathematical Society</publisher><ispartof>Transactions of the American Mathematical Society, 2019-02, Vol.371 (3), p.1735-1770</ispartof><rights>Copyright 2018, American Mathematical Society</rights><rights>2018 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-e4db51f6d2952d2ae1fbfa9339e8057103a8ac398db1097c8232257c06dafc4a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/tran/2019-371-03/S0002-9947-2018-07331-7/S0002-9947-2018-07331-7.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/tran/2019-371-03/S0002-9947-2018-07331-7/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,780,784,23327,27923,27924,77707,77717</link.rule.ids></links><search><creatorcontrib>Antonio Alarcón</creatorcontrib><creatorcontrib>Barbara Drinovec Drnovšek</creatorcontrib><creatorcontrib>Franc Forstnerič</creatorcontrib><creatorcontrib>Francisco J. López</creatorcontrib><title>Minimal surfaces in minimally convex domains</title><title>Transactions of the American Mathematical Society</title><description>In this paper, we prove that every conformal minimal immersion of a compact bordered Riemann surface M into a minimally convex domain D\subset \mathbb{R}^3 can be approximated uniformly on compacts in \mathring M=M\setminus bM by proper complete conformal minimal immersions \mathring M\to D. We also obtain a rigidity theorem for complete immersed minimal surfaces of finite total curvature contained in a minimally convex domain in \mathbb{R}^3, and we characterize the minimal surface hull of a compact set K in \mathbb{R}^n for any n\ge 3 by sequences of conformal minimal discs whose boundaries converge to K in the measure theoretic sense.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9j0tLxDAUhYMoWEcX_gChCzeCdW6SJk2WMowPGHGj63KbB3ToQ5Iqzr83peLSxeVy7zkczkfIJYU7ChrWU8BhXXFOj0hGQalCKgHHJAMAVmhdVqfkLMZ9OqFUMiO3L-3Q9tjl8TN4NC7m7ZD3y6875GYcvtx3bsce2yGekxOPXXQXv3tF3h-2b5unYvf6-Ly53xXIqZgKV9pGUC8t04JZho76xqPmXDsFoqLAUaHhWtkmda6MYpwxURmQFr0pka_IzZJrwhhjcL7-CKlQONQU6hmznjHrGTN5rxbvPk5j-DMyKWQanfTrRcc-_hPzA6zrWvg</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Antonio Alarcón</creator><creator>Barbara Drinovec Drnovšek</creator><creator>Franc Forstnerič</creator><creator>Francisco J. López</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190201</creationdate><title>Minimal surfaces in minimally convex domains</title><author>Antonio Alarcón ; Barbara Drinovec Drnovšek ; Franc Forstnerič ; Francisco J. López</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-e4db51f6d2952d2ae1fbfa9339e8057103a8ac398db1097c8232257c06dafc4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antonio Alarcón</creatorcontrib><creatorcontrib>Barbara Drinovec Drnovšek</creatorcontrib><creatorcontrib>Franc Forstnerič</creatorcontrib><creatorcontrib>Francisco J. López</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antonio Alarcón</au><au>Barbara Drinovec Drnovšek</au><au>Franc Forstnerič</au><au>Francisco J. López</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimal surfaces in minimally convex domains</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2019-02-01</date><risdate>2019</risdate><volume>371</volume><issue>3</issue><spage>1735</spage><epage>1770</epage><pages>1735-1770</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>In this paper, we prove that every conformal minimal immersion of a compact bordered Riemann surface M into a minimally convex domain D\subset \mathbb{R}^3 can be approximated uniformly on compacts in \mathring M=M\setminus bM by proper complete conformal minimal immersions \mathring M\to D. We also obtain a rigidity theorem for complete immersed minimal surfaces of finite total curvature contained in a minimally convex domain in \mathbb{R}^3, and we characterize the minimal surface hull of a compact set K in \mathbb{R}^n for any n\ge 3 by sequences of conformal minimal discs whose boundaries converge to K in the measure theoretic sense.</abstract><pub>American Mathematical Society</pub><doi>10.1090/tran/7331</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9947
ispartof Transactions of the American Mathematical Society, 2019-02, Vol.371 (3), p.1735-1770
issn 0002-9947
1088-6850
language eng
recordid cdi_crossref_primary_10_1090_tran_7331
source American Mathematical Society Journals
title Minimal surfaces in minimally convex domains
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A39%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimal%20surfaces%20in%20minimally%20convex%20domains&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Antonio%20Alarc%C3%B3n&rft.date=2019-02-01&rft.volume=371&rft.issue=3&rft.spage=1735&rft.epage=1770&rft.pages=1735-1770&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/7331&rft_dat=%3Cjstor_cross%3E26562659%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a315t-e4db51f6d2952d2ae1fbfa9339e8057103a8ac398db1097c8232257c06dafc4a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26562659&rfr_iscdi=true