Loading…
Fourier multipliers in Banach function spaces with UMD concavifications
We prove various extensions of the Coifman-Rubio de Francia-Semmes multiplier theorem to operator-valued multipliers on Banach function spaces. Our results involve a new boundedness condition on sets of operators which we call {\ell ^{r}(\ell ^{s})}-boundedness, which implies \mathcal {R}-boundednes...
Saved in:
Published in: | Transactions of the American Mathematical Society 2019-04, Vol.371 (7), p.4837-4868 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a293t-d5dd6bebe8aa70d41c41bfbd5ef83997670338f5a975cdbf826fc550dcc6ab7b3 |
---|---|
cites | cdi_FETCH-LOGICAL-a293t-d5dd6bebe8aa70d41c41bfbd5ef83997670338f5a975cdbf826fc550dcc6ab7b3 |
container_end_page | 4868 |
container_issue | 7 |
container_start_page | 4837 |
container_title | Transactions of the American Mathematical Society |
container_volume | 371 |
creator | Amenta, Alex Lorist, Emiel Veraar, Mark |
description | We prove various extensions of the Coifman-Rubio de Francia-Semmes multiplier theorem to operator-valued multipliers on Banach function spaces. Our results involve a new boundedness condition on sets of operators which we call {\ell ^{r}(\ell ^{s})}-boundedness, which implies \mathcal {R}-boundedness in many cases. The proofs are based on new Littlewood-Paley-Rubio de Francia-type estimates in Banach function spaces which were recently obtained by the authors. |
doi_str_mv | 10.1090/tran/7520 |
format | article |
fullrecord | <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_7520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_tran_7520</sourcerecordid><originalsourceid>FETCH-LOGICAL-a293t-d5dd6bebe8aa70d41c41bfbd5ef83997670338f5a975cdbf826fc550dcc6ab7b3</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqEw8A88sDCE3jwc2yOUtiAVsdA5un6pRnlUdgLi35OozEz3XJ1PZ_gIuc3gIQMJyyFgt-QshzOSZCBEWgkG5yQBgDyVsuSX5CrGz-mFUlQJ2W76MXgbaDs2gz82U4zUd_QJO9QH6sZOD77vaDyitpF---FA92_PVPedxi_vvMa5j9fkwmET7c3fXZD9Zv2xekl379vX1eMuxVwWQ2qYMZWyygpEDqbMdJkppwyzThRS8opDUQjHUHKmjXIir5xmDIzWFSquigW5P-3q0McYrKuPwbcYfuoM6tlAPRuoZwMTe3disY3_YL9NZVyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fourier multipliers in Banach function spaces with UMD concavifications</title><source>American Mathematical Society Journals</source><creator>Amenta, Alex ; Lorist, Emiel ; Veraar, Mark</creator><creatorcontrib>Amenta, Alex ; Lorist, Emiel ; Veraar, Mark</creatorcontrib><description>We prove various extensions of the Coifman-Rubio de Francia-Semmes multiplier theorem to operator-valued multipliers on Banach function spaces. Our results involve a new boundedness condition on sets of operators which we call {\ell ^{r}(\ell ^{s})}-boundedness, which implies \mathcal {R}-boundedness in many cases. The proofs are based on new Littlewood-Paley-Rubio de Francia-type estimates in Banach function spaces which were recently obtained by the authors.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/7520</identifier><language>eng</language><ispartof>Transactions of the American Mathematical Society, 2019-04, Vol.371 (7), p.4837-4868</ispartof><rights>Copyright 2018, American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a293t-d5dd6bebe8aa70d41c41bfbd5ef83997670338f5a975cdbf826fc550dcc6ab7b3</citedby><cites>FETCH-LOGICAL-a293t-d5dd6bebe8aa70d41c41bfbd5ef83997670338f5a975cdbf826fc550dcc6ab7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/tran/2019-371-07/S0002-9947-2018-07520-1/S0002-9947-2018-07520-1.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/tran/2019-371-07/S0002-9947-2018-07520-1/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,780,784,23328,27924,27925,77836,77846</link.rule.ids></links><search><creatorcontrib>Amenta, Alex</creatorcontrib><creatorcontrib>Lorist, Emiel</creatorcontrib><creatorcontrib>Veraar, Mark</creatorcontrib><title>Fourier multipliers in Banach function spaces with UMD concavifications</title><title>Transactions of the American Mathematical Society</title><description>We prove various extensions of the Coifman-Rubio de Francia-Semmes multiplier theorem to operator-valued multipliers on Banach function spaces. Our results involve a new boundedness condition on sets of operators which we call {\ell ^{r}(\ell ^{s})}-boundedness, which implies \mathcal {R}-boundedness in many cases. The proofs are based on new Littlewood-Paley-Rubio de Francia-type estimates in Banach function spaces which were recently obtained by the authors.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqEw8A88sDCE3jwc2yOUtiAVsdA5un6pRnlUdgLi35OozEz3XJ1PZ_gIuc3gIQMJyyFgt-QshzOSZCBEWgkG5yQBgDyVsuSX5CrGz-mFUlQJ2W76MXgbaDs2gz82U4zUd_QJO9QH6sZOD77vaDyitpF---FA92_PVPedxi_vvMa5j9fkwmET7c3fXZD9Zv2xekl379vX1eMuxVwWQ2qYMZWyygpEDqbMdJkppwyzThRS8opDUQjHUHKmjXIir5xmDIzWFSquigW5P-3q0McYrKuPwbcYfuoM6tlAPRuoZwMTe3disY3_YL9NZVyw</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Amenta, Alex</creator><creator>Lorist, Emiel</creator><creator>Veraar, Mark</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190401</creationdate><title>Fourier multipliers in Banach function spaces with UMD concavifications</title><author>Amenta, Alex ; Lorist, Emiel ; Veraar, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a293t-d5dd6bebe8aa70d41c41bfbd5ef83997670338f5a975cdbf826fc550dcc6ab7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amenta, Alex</creatorcontrib><creatorcontrib>Lorist, Emiel</creatorcontrib><creatorcontrib>Veraar, Mark</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amenta, Alex</au><au>Lorist, Emiel</au><au>Veraar, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fourier multipliers in Banach function spaces with UMD concavifications</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2019-04-01</date><risdate>2019</risdate><volume>371</volume><issue>7</issue><spage>4837</spage><epage>4868</epage><pages>4837-4868</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>We prove various extensions of the Coifman-Rubio de Francia-Semmes multiplier theorem to operator-valued multipliers on Banach function spaces. Our results involve a new boundedness condition on sets of operators which we call {\ell ^{r}(\ell ^{s})}-boundedness, which implies \mathcal {R}-boundedness in many cases. The proofs are based on new Littlewood-Paley-Rubio de Francia-type estimates in Banach function spaces which were recently obtained by the authors.</abstract><doi>10.1090/tran/7520</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9947 |
ispartof | Transactions of the American Mathematical Society, 2019-04, Vol.371 (7), p.4837-4868 |
issn | 0002-9947 1088-6850 |
language | eng |
recordid | cdi_crossref_primary_10_1090_tran_7520 |
source | American Mathematical Society Journals |
title | Fourier multipliers in Banach function spaces with UMD concavifications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A57%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fourier%20multipliers%20in%20Banach%20function%20spaces%20with%20UMD%20concavifications&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Amenta,%20Alex&rft.date=2019-04-01&rft.volume=371&rft.issue=7&rft.spage=4837&rft.epage=4868&rft.pages=4837-4868&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/7520&rft_dat=%3Cams_cross%3E10_1090_tran_7520%3C/ams_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a293t-d5dd6bebe8aa70d41c41bfbd5ef83997670338f5a975cdbf826fc550dcc6ab7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |