Loading…
Extension of isotopies in the plane
It is known that a holomorphic motion (an analytic version of an isotopy) of a set X in the complex plane \mathbb{C} always extends to a holomorphic motion of the entire plane. In the topological category, it was recently shown that an isotopy h: X \times [0,1] \to \mathbb{C}, starting at the identi...
Saved in:
Published in: | Transactions of the American Mathematical Society 2019-10, Vol.372 (7), p.4889-4915 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a280t-f76cc7cff9c78295607a4ee6af2ca3380f36e91115c46386bfc5b4fc3c490d9c3 |
---|---|
cites | |
container_end_page | 4915 |
container_issue | 7 |
container_start_page | 4889 |
container_title | Transactions of the American Mathematical Society |
container_volume | 372 |
creator | HOEHN, L. C. OVERSTEEGEN, L. G. TYMCHATYN, E. D. |
description | It is known that a holomorphic motion (an analytic version of an isotopy) of a set X in the complex plane \mathbb{C} always extends to a holomorphic motion of the entire plane. In the topological category, it was recently shown that an isotopy h: X \times [0,1] \to \mathbb{C}, starting at the identity, of a plane continuum X also always extends to an isotopy of the entire plane. Easy examples show that this result does not generalize to all plane compacta. In this paper we will provide a characterization of isotopies of uniformly perfect plane compacta X which extend to an isotopy of the entire plane. Using this characterization, we prove that such an extension is always possible provided the diameters of all components of X are uniformly bounded away from zero. |
doi_str_mv | 10.1090/tran/7820 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_7820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26788960</jstor_id><sourcerecordid>26788960</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-f76cc7cff9c78295607a4ee6af2ca3380f36e91115c46386bfc5b4fc3c490d9c3</originalsourceid><addsrcrecordid>eNp9j0tLxDAUhYMoWEcX_gAhoBsXdW6aNI-lDOMDBtzoumSuCXaYSUqShf57Wzq4dHU5nI_D_Qi5ZvDAwMCyJBuWSjdwQioGWtdSt3BKKgBoamOEOicXOe_GCELLityuv4sLuY-BRk_7HEscepdpH2j5cnTY2-AuyZm3--yujndBPp7W76uXevP2_Lp63NS20VBqrySiQu8Njg-YVoKywjlpfYOWcw2eS2cYYy0KybXcemy3wiNHYeDTIF-Q-3kXU8w5Od8NqT_Y9NMx6Ca7brLrJruRvZnZXS4x_YGNVFobOfV3c28P-Z-ZX8oBV6M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Extension of isotopies in the plane</title><source>American Mathematical Society Journals</source><creator>HOEHN, L. C. ; OVERSTEEGEN, L. G. ; TYMCHATYN, E. D.</creator><creatorcontrib>HOEHN, L. C. ; OVERSTEEGEN, L. G. ; TYMCHATYN, E. D.</creatorcontrib><description>It is known that a holomorphic motion (an analytic version of an isotopy) of a set X in the complex plane \mathbb{C} always extends to a holomorphic motion of the entire plane. In the topological category, it was recently shown that an isotopy h: X \times [0,1] \to \mathbb{C}, starting at the identity, of a plane continuum X also always extends to an isotopy of the entire plane. Easy examples show that this result does not generalize to all plane compacta. In this paper we will provide a characterization of isotopies of uniformly perfect plane compacta X which extend to an isotopy of the entire plane. Using this characterization, we prove that such an extension is always possible provided the diameters of all components of X are uniformly bounded away from zero.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/7820</identifier><language>eng</language><publisher>American Mathematical Society</publisher><ispartof>Transactions of the American Mathematical Society, 2019-10, Vol.372 (7), p.4889-4915</ispartof><rights>Copyright 2019, American Mathematical Society</rights><rights>2019 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-f76cc7cff9c78295607a4ee6af2ca3380f36e91115c46386bfc5b4fc3c490d9c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/tran/2019-372-07/S0002-9947-2019-07820-0/S0002-9947-2019-07820-0.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/tran/2019-372-07/S0002-9947-2019-07820-0/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,780,784,23328,27924,27925,77708,77718</link.rule.ids></links><search><creatorcontrib>HOEHN, L. C.</creatorcontrib><creatorcontrib>OVERSTEEGEN, L. G.</creatorcontrib><creatorcontrib>TYMCHATYN, E. D.</creatorcontrib><title>Extension of isotopies in the plane</title><title>Transactions of the American Mathematical Society</title><description>It is known that a holomorphic motion (an analytic version of an isotopy) of a set X in the complex plane \mathbb{C} always extends to a holomorphic motion of the entire plane. In the topological category, it was recently shown that an isotopy h: X \times [0,1] \to \mathbb{C}, starting at the identity, of a plane continuum X also always extends to an isotopy of the entire plane. Easy examples show that this result does not generalize to all plane compacta. In this paper we will provide a characterization of isotopies of uniformly perfect plane compacta X which extend to an isotopy of the entire plane. Using this characterization, we prove that such an extension is always possible provided the diameters of all components of X are uniformly bounded away from zero.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9j0tLxDAUhYMoWEcX_gAhoBsXdW6aNI-lDOMDBtzoumSuCXaYSUqShf57Wzq4dHU5nI_D_Qi5ZvDAwMCyJBuWSjdwQioGWtdSt3BKKgBoamOEOicXOe_GCELLityuv4sLuY-BRk_7HEscepdpH2j5cnTY2-AuyZm3--yujndBPp7W76uXevP2_Lp63NS20VBqrySiQu8Njg-YVoKywjlpfYOWcw2eS2cYYy0KybXcemy3wiNHYeDTIF-Q-3kXU8w5Od8NqT_Y9NMx6Ca7brLrJruRvZnZXS4x_YGNVFobOfV3c28P-Z-ZX8oBV6M</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>HOEHN, L. C.</creator><creator>OVERSTEEGEN, L. G.</creator><creator>TYMCHATYN, E. D.</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191001</creationdate><title>Extension of isotopies in the plane</title><author>HOEHN, L. C. ; OVERSTEEGEN, L. G. ; TYMCHATYN, E. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-f76cc7cff9c78295607a4ee6af2ca3380f36e91115c46386bfc5b4fc3c490d9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HOEHN, L. C.</creatorcontrib><creatorcontrib>OVERSTEEGEN, L. G.</creatorcontrib><creatorcontrib>TYMCHATYN, E. D.</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HOEHN, L. C.</au><au>OVERSTEEGEN, L. G.</au><au>TYMCHATYN, E. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extension of isotopies in the plane</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>372</volume><issue>7</issue><spage>4889</spage><epage>4915</epage><pages>4889-4915</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>It is known that a holomorphic motion (an analytic version of an isotopy) of a set X in the complex plane \mathbb{C} always extends to a holomorphic motion of the entire plane. In the topological category, it was recently shown that an isotopy h: X \times [0,1] \to \mathbb{C}, starting at the identity, of a plane continuum X also always extends to an isotopy of the entire plane. Easy examples show that this result does not generalize to all plane compacta. In this paper we will provide a characterization of isotopies of uniformly perfect plane compacta X which extend to an isotopy of the entire plane. Using this characterization, we prove that such an extension is always possible provided the diameters of all components of X are uniformly bounded away from zero.</abstract><pub>American Mathematical Society</pub><doi>10.1090/tran/7820</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9947 |
ispartof | Transactions of the American Mathematical Society, 2019-10, Vol.372 (7), p.4889-4915 |
issn | 0002-9947 1088-6850 |
language | eng |
recordid | cdi_crossref_primary_10_1090_tran_7820 |
source | American Mathematical Society Journals |
title | Extension of isotopies in the plane |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A45%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extension%20of%20isotopies%20in%20the%20plane&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=HOEHN,%20L.%20C.&rft.date=2019-10-01&rft.volume=372&rft.issue=7&rft.spage=4889&rft.epage=4915&rft.pages=4889-4915&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/7820&rft_dat=%3Cjstor_cross%3E26788960%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a280t-f76cc7cff9c78295607a4ee6af2ca3380f36e91115c46386bfc5b4fc3c490d9c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26788960&rfr_iscdi=true |