Loading…

Assouad dimension of planar self-affine sets

We calculate the Assouad dimension of a planar self-affine set X satisfying the strong separation condition and the projection condition and show that X is minimal for the conformal Assouad dimension. Furthermore, we see that such a self-affine set X adheres to very strong tangential regularity by s...

Full description

Saved in:
Bibliographic Details
Published in:Transactions of the American Mathematical Society 2021-02, Vol.374 (2), p.1297-1326
Main Authors: Balázs Bárány, Antti Käenmäki, Eino Rossi
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a293t-d305f2b612fe9da9212e4f7d58287d2438253801871e52b6772461ba1a0c17213
cites
container_end_page 1326
container_issue 2
container_start_page 1297
container_title Transactions of the American Mathematical Society
container_volume 374
creator Balázs Bárány
Antti Käenmäki
Eino Rossi
description We calculate the Assouad dimension of a planar self-affine set X satisfying the strong separation condition and the projection condition and show that X is minimal for the conformal Assouad dimension. Furthermore, we see that such a self-affine set X adheres to very strong tangential regularity by showing that any two points of X, which are generic with respect to a self-affine measure having simple Lyapunov spectrum, share the same collection of tangent sets.
doi_str_mv 10.1090/tran/8224
format article
fullrecord <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_8224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_tran_8224</sourcerecordid><originalsourceid>FETCH-LOGICAL-a293t-d305f2b612fe9da9212e4f7d58287d2438253801871e52b6772461ba1a0c17213</originalsourceid><addsrcrecordid>eNp9j0tLxDAUhYMoWEcX_oMu3AjGufc2bZLlMPiCATe6DncmCVT6GJK68N_bMq5dnXPg48AnxC3CI4KF9ZR4WBsidSYKBGNkY2o4FwUAkLRW6UtxlfPXPEGZphAPm5zHb_alb_sw5HYcyjGWx44HTmUOXZQcYzuEuU_5WlxE7nK4-cuV-Hx--ti-yt37y9t2s5NMtpqkr6COtG-QYrCeLSEFFbWvDRntSVWG6soAGo2hnjmtSTW4Z2Q4oCasVuL-9HtIY84pRHdMbc_pxyG4RdMtmm7RnNm7E8t9_gf7Bf_DT5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Assouad dimension of planar self-affine sets</title><source>American Mathematical Society Journals</source><creator>Balázs Bárány ; Antti Käenmäki ; Eino Rossi</creator><creatorcontrib>Balázs Bárány ; Antti Käenmäki ; Eino Rossi</creatorcontrib><description>We calculate the Assouad dimension of a planar self-affine set X satisfying the strong separation condition and the projection condition and show that X is minimal for the conformal Assouad dimension. Furthermore, we see that such a self-affine set X adheres to very strong tangential regularity by showing that any two points of X, which are generic with respect to a self-affine measure having simple Lyapunov spectrum, share the same collection of tangent sets.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/8224</identifier><language>eng</language><ispartof>Transactions of the American Mathematical Society, 2021-02, Vol.374 (2), p.1297-1326</ispartof><rights>Copyright 2020, American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a293t-d305f2b612fe9da9212e4f7d58287d2438253801871e52b6772461ba1a0c17213</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/tran/2021-374-02/S0002-9947-2020-08224-5/S0002-9947-2020-08224-5.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/tran/2021-374-02/S0002-9947-2020-08224-5/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,780,784,23328,27924,27925,77708,77718</link.rule.ids></links><search><creatorcontrib>Balázs Bárány</creatorcontrib><creatorcontrib>Antti Käenmäki</creatorcontrib><creatorcontrib>Eino Rossi</creatorcontrib><title>Assouad dimension of planar self-affine sets</title><title>Transactions of the American Mathematical Society</title><description>We calculate the Assouad dimension of a planar self-affine set X satisfying the strong separation condition and the projection condition and show that X is minimal for the conformal Assouad dimension. Furthermore, we see that such a self-affine set X adheres to very strong tangential regularity by showing that any two points of X, which are generic with respect to a self-affine measure having simple Lyapunov spectrum, share the same collection of tangent sets.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9j0tLxDAUhYMoWEcX_oMu3AjGufc2bZLlMPiCATe6DncmCVT6GJK68N_bMq5dnXPg48AnxC3CI4KF9ZR4WBsidSYKBGNkY2o4FwUAkLRW6UtxlfPXPEGZphAPm5zHb_alb_sw5HYcyjGWx44HTmUOXZQcYzuEuU_5WlxE7nK4-cuV-Hx--ti-yt37y9t2s5NMtpqkr6COtG-QYrCeLSEFFbWvDRntSVWG6soAGo2hnjmtSTW4Z2Q4oCasVuL-9HtIY84pRHdMbc_pxyG4RdMtmm7RnNm7E8t9_gf7Bf_DT5Q</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Balázs Bárány</creator><creator>Antti Käenmäki</creator><creator>Eino Rossi</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210201</creationdate><title>Assouad dimension of planar self-affine sets</title><author>Balázs Bárány ; Antti Käenmäki ; Eino Rossi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a293t-d305f2b612fe9da9212e4f7d58287d2438253801871e52b6772461ba1a0c17213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balázs Bárány</creatorcontrib><creatorcontrib>Antti Käenmäki</creatorcontrib><creatorcontrib>Eino Rossi</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balázs Bárány</au><au>Antti Käenmäki</au><au>Eino Rossi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assouad dimension of planar self-affine sets</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>374</volume><issue>2</issue><spage>1297</spage><epage>1326</epage><pages>1297-1326</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>We calculate the Assouad dimension of a planar self-affine set X satisfying the strong separation condition and the projection condition and show that X is minimal for the conformal Assouad dimension. Furthermore, we see that such a self-affine set X adheres to very strong tangential regularity by showing that any two points of X, which are generic with respect to a self-affine measure having simple Lyapunov spectrum, share the same collection of tangent sets.</abstract><doi>10.1090/tran/8224</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9947
ispartof Transactions of the American Mathematical Society, 2021-02, Vol.374 (2), p.1297-1326
issn 0002-9947
1088-6850
language eng
recordid cdi_crossref_primary_10_1090_tran_8224
source American Mathematical Society Journals
title Assouad dimension of planar self-affine sets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A41%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assouad%20dimension%20of%20planar%20self-affine%20sets&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Bal%C3%A1zs%20B%C3%A1r%C3%A1ny&rft.date=2021-02-01&rft.volume=374&rft.issue=2&rft.spage=1297&rft.epage=1326&rft.pages=1297-1326&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/8224&rft_dat=%3Cams_cross%3E10_1090_tran_8224%3C/ams_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a293t-d305f2b612fe9da9212e4f7d58287d2438253801871e52b6772461ba1a0c17213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true