Loading…

Amorphic complexity of group actions with applications to quasicrystals

In this article, we define amorphic complexity for actions of locally compact \sigma-compact amenable groups on compact metric spaces. Amorphic complexity, originally introduced for \mathbb {Z}-actions, is a topological invariant which measures the complexity of dynamical systems in the regime of ze...

Full description

Saved in:
Bibliographic Details
Published in:Transactions of the American Mathematical Society 2023-04, Vol.376 (4), p.2395
Main Authors: Fuhrmann, Gabriel, Gröger, Maik, Jäger, Tobias, Kwietniak, Dominik
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a218t-3005927ae2edaddc16c2cc0500264ba0c63313c65dec24080bb3ddcdaca74bdc3
container_end_page
container_issue 4
container_start_page 2395
container_title Transactions of the American Mathematical Society
container_volume 376
creator Fuhrmann, Gabriel
Gröger, Maik
Jäger, Tobias
Kwietniak, Dominik
description In this article, we define amorphic complexity for actions of locally compact \sigma-compact amenable groups on compact metric spaces. Amorphic complexity, originally introduced for \mathbb {Z}-actions, is a topological invariant which measures the complexity of dynamical systems in the regime of zero entropy. We show that it is tailor-made to study strictly ergodic group actions with discrete spectrum and continuous eigenfunctions. This class of actions includes, in particular, Delone dynamical systems related to regular model sets obtained via Meyer’s cut and project method. We provide sharp upper bounds on amorphic complexity of such systems. In doing so, we observe an intimate relationship between amorphic complexity and fractal geometry.
doi_str_mv 10.1090/tran/8700
format article
fullrecord <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_8700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_tran_8700</sourcerecordid><originalsourceid>FETCH-LOGICAL-a218t-3005927ae2edaddc16c2cc0500264ba0c63313c65dec24080bb3ddcdaca74bdc3</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoWEcX_oMs3Lio89KPNF0Og47CgBtdl9eX1om0k5pk0P57W-ra1eVdDo_LYexWwIOAEtbB4XGtCoAzFglQKpYqh3MWAUASl2VWXLIr7z-nEzIlI7bb9NYNB0OcbD90zY8JI7ct_3D2NHCkYOzR828TDhyHoTOESxMs_zqhN-RGH7Dz1-yinaK5-csVe396fNs-x_vX3ct2s48xESrEKUBeJgU2SaNRaxKSEiLIp3UyqxFIpqlISea6oSQDBXWdTphGwiKrNaUrdr_8JWe9d01bDc706MZKQDUbqGYD1WxgYu8WFnv_D_YLqqNdEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Amorphic complexity of group actions with applications to quasicrystals</title><source>American Mathematical Society</source><creator>Fuhrmann, Gabriel ; Gröger, Maik ; Jäger, Tobias ; Kwietniak, Dominik</creator><creatorcontrib>Fuhrmann, Gabriel ; Gröger, Maik ; Jäger, Tobias ; Kwietniak, Dominik</creatorcontrib><description>In this article, we define amorphic complexity for actions of locally compact \sigma-compact amenable groups on compact metric spaces. Amorphic complexity, originally introduced for \mathbb {Z}-actions, is a topological invariant which measures the complexity of dynamical systems in the regime of zero entropy. We show that it is tailor-made to study strictly ergodic group actions with discrete spectrum and continuous eigenfunctions. This class of actions includes, in particular, Delone dynamical systems related to regular model sets obtained via Meyer’s cut and project method. We provide sharp upper bounds on amorphic complexity of such systems. In doing so, we observe an intimate relationship between amorphic complexity and fractal geometry.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/8700</identifier><language>eng</language><ispartof>Transactions of the American Mathematical Society, 2023-04, Vol.376 (4), p.2395</ispartof><rights>Copyright 2023, American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a218t-3005927ae2edaddc16c2cc0500264ba0c63313c65dec24080bb3ddcdaca74bdc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/tran/2023-376-04/S0002-9947-2023-08700-1/S0002-9947-2023-08700-1.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/tran/2023-376-04/S0002-9947-2023-08700-1/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,780,784,23327,27923,27924,77607,77617</link.rule.ids></links><search><creatorcontrib>Fuhrmann, Gabriel</creatorcontrib><creatorcontrib>Gröger, Maik</creatorcontrib><creatorcontrib>Jäger, Tobias</creatorcontrib><creatorcontrib>Kwietniak, Dominik</creatorcontrib><title>Amorphic complexity of group actions with applications to quasicrystals</title><title>Transactions of the American Mathematical Society</title><description>In this article, we define amorphic complexity for actions of locally compact \sigma-compact amenable groups on compact metric spaces. Amorphic complexity, originally introduced for \mathbb {Z}-actions, is a topological invariant which measures the complexity of dynamical systems in the regime of zero entropy. We show that it is tailor-made to study strictly ergodic group actions with discrete spectrum and continuous eigenfunctions. This class of actions includes, in particular, Delone dynamical systems related to regular model sets obtained via Meyer’s cut and project method. We provide sharp upper bounds on amorphic complexity of such systems. In doing so, we observe an intimate relationship between amorphic complexity and fractal geometry.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoWEcX_oMs3Lio89KPNF0Og47CgBtdl9eX1om0k5pk0P57W-ra1eVdDo_LYexWwIOAEtbB4XGtCoAzFglQKpYqh3MWAUASl2VWXLIr7z-nEzIlI7bb9NYNB0OcbD90zY8JI7ct_3D2NHCkYOzR828TDhyHoTOESxMs_zqhN-RGH7Dz1-yinaK5-csVe396fNs-x_vX3ct2s48xESrEKUBeJgU2SaNRaxKSEiLIp3UyqxFIpqlISea6oSQDBXWdTphGwiKrNaUrdr_8JWe9d01bDc706MZKQDUbqGYD1WxgYu8WFnv_D_YLqqNdEg</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Fuhrmann, Gabriel</creator><creator>Gröger, Maik</creator><creator>Jäger, Tobias</creator><creator>Kwietniak, Dominik</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230401</creationdate><title>Amorphic complexity of group actions with applications to quasicrystals</title><author>Fuhrmann, Gabriel ; Gröger, Maik ; Jäger, Tobias ; Kwietniak, Dominik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a218t-3005927ae2edaddc16c2cc0500264ba0c63313c65dec24080bb3ddcdaca74bdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuhrmann, Gabriel</creatorcontrib><creatorcontrib>Gröger, Maik</creatorcontrib><creatorcontrib>Jäger, Tobias</creatorcontrib><creatorcontrib>Kwietniak, Dominik</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuhrmann, Gabriel</au><au>Gröger, Maik</au><au>Jäger, Tobias</au><au>Kwietniak, Dominik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amorphic complexity of group actions with applications to quasicrystals</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>376</volume><issue>4</issue><spage>2395</spage><pages>2395-</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>In this article, we define amorphic complexity for actions of locally compact \sigma-compact amenable groups on compact metric spaces. Amorphic complexity, originally introduced for \mathbb {Z}-actions, is a topological invariant which measures the complexity of dynamical systems in the regime of zero entropy. We show that it is tailor-made to study strictly ergodic group actions with discrete spectrum and continuous eigenfunctions. This class of actions includes, in particular, Delone dynamical systems related to regular model sets obtained via Meyer’s cut and project method. We provide sharp upper bounds on amorphic complexity of such systems. In doing so, we observe an intimate relationship between amorphic complexity and fractal geometry.</abstract><doi>10.1090/tran/8700</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9947
ispartof Transactions of the American Mathematical Society, 2023-04, Vol.376 (4), p.2395
issn 0002-9947
1088-6850
language eng
recordid cdi_crossref_primary_10_1090_tran_8700
source American Mathematical Society
title Amorphic complexity of group actions with applications to quasicrystals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A30%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amorphic%20complexity%20of%20group%20actions%20with%20applications%20to%20quasicrystals&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Fuhrmann,%20Gabriel&rft.date=2023-04-01&rft.volume=376&rft.issue=4&rft.spage=2395&rft.pages=2395-&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/8700&rft_dat=%3Cams_cross%3E10_1090_tran_8700%3C/ams_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a218t-3005927ae2edaddc16c2cc0500264ba0c63313c65dec24080bb3ddcdaca74bdc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true