Loading…
Amorphic complexity of group actions with applications to quasicrystals
In this article, we define amorphic complexity for actions of locally compact \sigma-compact amenable groups on compact metric spaces. Amorphic complexity, originally introduced for \mathbb {Z}-actions, is a topological invariant which measures the complexity of dynamical systems in the regime of ze...
Saved in:
Published in: | Transactions of the American Mathematical Society 2023-04, Vol.376 (4), p.2395 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a218t-3005927ae2edaddc16c2cc0500264ba0c63313c65dec24080bb3ddcdaca74bdc3 |
container_end_page | |
container_issue | 4 |
container_start_page | 2395 |
container_title | Transactions of the American Mathematical Society |
container_volume | 376 |
creator | Fuhrmann, Gabriel Gröger, Maik Jäger, Tobias Kwietniak, Dominik |
description | In this article, we define amorphic complexity for actions of locally compact \sigma-compact amenable groups on compact metric spaces. Amorphic complexity, originally introduced for \mathbb {Z}-actions, is a topological invariant which measures the complexity of dynamical systems in the regime of zero entropy. We show that it is tailor-made to study strictly ergodic group actions with discrete spectrum and continuous eigenfunctions. This class of actions includes, in particular, Delone dynamical systems related to regular model sets obtained via Meyer’s cut and project method. We provide sharp upper bounds on amorphic complexity of such systems. In doing so, we observe an intimate relationship between amorphic complexity and fractal geometry. |
doi_str_mv | 10.1090/tran/8700 |
format | article |
fullrecord | <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_8700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_tran_8700</sourcerecordid><originalsourceid>FETCH-LOGICAL-a218t-3005927ae2edaddc16c2cc0500264ba0c63313c65dec24080bb3ddcdaca74bdc3</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoWEcX_oMs3Lio89KPNF0Og47CgBtdl9eX1om0k5pk0P57W-ra1eVdDo_LYexWwIOAEtbB4XGtCoAzFglQKpYqh3MWAUASl2VWXLIr7z-nEzIlI7bb9NYNB0OcbD90zY8JI7ct_3D2NHCkYOzR828TDhyHoTOESxMs_zqhN-RGH7Dz1-yinaK5-csVe396fNs-x_vX3ct2s48xESrEKUBeJgU2SaNRaxKSEiLIp3UyqxFIpqlISea6oSQDBXWdTphGwiKrNaUrdr_8JWe9d01bDc706MZKQDUbqGYD1WxgYu8WFnv_D_YLqqNdEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Amorphic complexity of group actions with applications to quasicrystals</title><source>American Mathematical Society</source><creator>Fuhrmann, Gabriel ; Gröger, Maik ; Jäger, Tobias ; Kwietniak, Dominik</creator><creatorcontrib>Fuhrmann, Gabriel ; Gröger, Maik ; Jäger, Tobias ; Kwietniak, Dominik</creatorcontrib><description>In this article, we define amorphic complexity for actions of locally compact \sigma-compact amenable groups on compact metric spaces. Amorphic complexity, originally introduced for \mathbb {Z}-actions, is a topological invariant which measures the complexity of dynamical systems in the regime of zero entropy. We show that it is tailor-made to study strictly ergodic group actions with discrete spectrum and continuous eigenfunctions. This class of actions includes, in particular, Delone dynamical systems related to regular model sets obtained via Meyer’s cut and project method. We provide sharp upper bounds on amorphic complexity of such systems. In doing so, we observe an intimate relationship between amorphic complexity and fractal geometry.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/8700</identifier><language>eng</language><ispartof>Transactions of the American Mathematical Society, 2023-04, Vol.376 (4), p.2395</ispartof><rights>Copyright 2023, American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a218t-3005927ae2edaddc16c2cc0500264ba0c63313c65dec24080bb3ddcdaca74bdc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/tran/2023-376-04/S0002-9947-2023-08700-1/S0002-9947-2023-08700-1.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/tran/2023-376-04/S0002-9947-2023-08700-1/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,780,784,23327,27923,27924,77607,77617</link.rule.ids></links><search><creatorcontrib>Fuhrmann, Gabriel</creatorcontrib><creatorcontrib>Gröger, Maik</creatorcontrib><creatorcontrib>Jäger, Tobias</creatorcontrib><creatorcontrib>Kwietniak, Dominik</creatorcontrib><title>Amorphic complexity of group actions with applications to quasicrystals</title><title>Transactions of the American Mathematical Society</title><description>In this article, we define amorphic complexity for actions of locally compact \sigma-compact amenable groups on compact metric spaces. Amorphic complexity, originally introduced for \mathbb {Z}-actions, is a topological invariant which measures the complexity of dynamical systems in the regime of zero entropy. We show that it is tailor-made to study strictly ergodic group actions with discrete spectrum and continuous eigenfunctions. This class of actions includes, in particular, Delone dynamical systems related to regular model sets obtained via Meyer’s cut and project method. We provide sharp upper bounds on amorphic complexity of such systems. In doing so, we observe an intimate relationship between amorphic complexity and fractal geometry.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoWEcX_oMs3Lio89KPNF0Og47CgBtdl9eX1om0k5pk0P57W-ra1eVdDo_LYexWwIOAEtbB4XGtCoAzFglQKpYqh3MWAUASl2VWXLIr7z-nEzIlI7bb9NYNB0OcbD90zY8JI7ct_3D2NHCkYOzR828TDhyHoTOESxMs_zqhN-RGH7Dz1-yinaK5-csVe396fNs-x_vX3ct2s48xESrEKUBeJgU2SaNRaxKSEiLIp3UyqxFIpqlISea6oSQDBXWdTphGwiKrNaUrdr_8JWe9d01bDc706MZKQDUbqGYD1WxgYu8WFnv_D_YLqqNdEg</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Fuhrmann, Gabriel</creator><creator>Gröger, Maik</creator><creator>Jäger, Tobias</creator><creator>Kwietniak, Dominik</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230401</creationdate><title>Amorphic complexity of group actions with applications to quasicrystals</title><author>Fuhrmann, Gabriel ; Gröger, Maik ; Jäger, Tobias ; Kwietniak, Dominik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a218t-3005927ae2edaddc16c2cc0500264ba0c63313c65dec24080bb3ddcdaca74bdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuhrmann, Gabriel</creatorcontrib><creatorcontrib>Gröger, Maik</creatorcontrib><creatorcontrib>Jäger, Tobias</creatorcontrib><creatorcontrib>Kwietniak, Dominik</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuhrmann, Gabriel</au><au>Gröger, Maik</au><au>Jäger, Tobias</au><au>Kwietniak, Dominik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amorphic complexity of group actions with applications to quasicrystals</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>376</volume><issue>4</issue><spage>2395</spage><pages>2395-</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>In this article, we define amorphic complexity for actions of locally compact \sigma-compact amenable groups on compact metric spaces. Amorphic complexity, originally introduced for \mathbb {Z}-actions, is a topological invariant which measures the complexity of dynamical systems in the regime of zero entropy. We show that it is tailor-made to study strictly ergodic group actions with discrete spectrum and continuous eigenfunctions. This class of actions includes, in particular, Delone dynamical systems related to regular model sets obtained via Meyer’s cut and project method. We provide sharp upper bounds on amorphic complexity of such systems. In doing so, we observe an intimate relationship between amorphic complexity and fractal geometry.</abstract><doi>10.1090/tran/8700</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9947 |
ispartof | Transactions of the American Mathematical Society, 2023-04, Vol.376 (4), p.2395 |
issn | 0002-9947 1088-6850 |
language | eng |
recordid | cdi_crossref_primary_10_1090_tran_8700 |
source | American Mathematical Society |
title | Amorphic complexity of group actions with applications to quasicrystals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A30%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amorphic%20complexity%20of%20group%20actions%20with%20applications%20to%20quasicrystals&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Fuhrmann,%20Gabriel&rft.date=2023-04-01&rft.volume=376&rft.issue=4&rft.spage=2395&rft.pages=2395-&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/8700&rft_dat=%3Cams_cross%3E10_1090_tran_8700%3C/ams_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a218t-3005927ae2edaddc16c2cc0500264ba0c63313c65dec24080bb3ddcdaca74bdc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |