Loading…

Chromatic quasisymmetric functions and noncommutative -symmetric functions

For a natural unit interval order P P , we describe proper colorings of the incomparability graph of P P in the language of heaps. We also introduce a combinatorial operation, called a local flip , on the heaps. This operation defines an equivalence relation on the proper colorings, and the equivale...

Full description

Saved in:
Bibliographic Details
Published in:Transactions of the American Mathematical Society 2024-02
Main Author: Hwang, Byung-Hak
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-crossref_primary_10_1090_tran_90963
container_end_page
container_issue
container_start_page
container_title Transactions of the American Mathematical Society
container_volume
creator Hwang, Byung-Hak
description For a natural unit interval order P P , we describe proper colorings of the incomparability graph of P P in the language of heaps. We also introduce a combinatorial operation, called a local flip , on the heaps. This operation defines an equivalence relation on the proper colorings, and the equivalence relation refines the ascent statistic introduced by Shareshian and Wachs. In addition, we define an analogue of noncommutative symmetric functions introduced by Fomin and Greene, with respect to P P . We establish a duality between the chromatic quasisymmetric function of P P and these noncommutative symmetric functions. This duality leads us to positive expansions of the chromatic quasisymmetric functions into several symmetric function bases. In particular, we present some partial results for the e e -positivity conjecture.
doi_str_mv 10.1090/tran/9096
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_9096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_tran_9096</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1090_tran_90963</originalsourceid><addsrcrecordid>eNqVjr0KwjAYAIMoWH8G3yCrQ-0XrTWZRRFn9xBiihGTaL5U6NvbgqOL03FwwxGyYLBiIKBIUflCgKgGJGPAeV7xLQxJBgDrXIhyNyYTxHunUPIqI-f9LQanktX01Si02DpnUuy0brxONnikyl-pD14H55rUpW9D8x_djIxq9UAz_3JKlsfDZX_KdQyI0dTyGa1TsZUMZD8r-1nZz27-aT-h80iV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Chromatic quasisymmetric functions and noncommutative -symmetric functions</title><source>American Mathematical Society</source><creator>Hwang, Byung-Hak</creator><creatorcontrib>Hwang, Byung-Hak</creatorcontrib><description>For a natural unit interval order P P , we describe proper colorings of the incomparability graph of P P in the language of heaps. We also introduce a combinatorial operation, called a local flip , on the heaps. This operation defines an equivalence relation on the proper colorings, and the equivalence relation refines the ascent statistic introduced by Shareshian and Wachs. In addition, we define an analogue of noncommutative symmetric functions introduced by Fomin and Greene, with respect to P P . We establish a duality between the chromatic quasisymmetric function of P P and these noncommutative symmetric functions. This duality leads us to positive expansions of the chromatic quasisymmetric functions into several symmetric function bases. In particular, we present some partial results for the e e -positivity conjecture.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/9096</identifier><language>eng</language><ispartof>Transactions of the American Mathematical Society, 2024-02</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1090_tran_90963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hwang, Byung-Hak</creatorcontrib><title>Chromatic quasisymmetric functions and noncommutative -symmetric functions</title><title>Transactions of the American Mathematical Society</title><description>For a natural unit interval order P P , we describe proper colorings of the incomparability graph of P P in the language of heaps. We also introduce a combinatorial operation, called a local flip , on the heaps. This operation defines an equivalence relation on the proper colorings, and the equivalence relation refines the ascent statistic introduced by Shareshian and Wachs. In addition, we define an analogue of noncommutative symmetric functions introduced by Fomin and Greene, with respect to P P . We establish a duality between the chromatic quasisymmetric function of P P and these noncommutative symmetric functions. This duality leads us to positive expansions of the chromatic quasisymmetric functions into several symmetric function bases. In particular, we present some partial results for the e e -positivity conjecture.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVjr0KwjAYAIMoWH8G3yCrQ-0XrTWZRRFn9xBiihGTaL5U6NvbgqOL03FwwxGyYLBiIKBIUflCgKgGJGPAeV7xLQxJBgDrXIhyNyYTxHunUPIqI-f9LQanktX01Si02DpnUuy0brxONnikyl-pD14H55rUpW9D8x_djIxq9UAz_3JKlsfDZX_KdQyI0dTyGa1TsZUMZD8r-1nZz27-aT-h80iV</recordid><startdate>20240213</startdate><enddate>20240213</enddate><creator>Hwang, Byung-Hak</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240213</creationdate><title>Chromatic quasisymmetric functions and noncommutative -symmetric functions</title><author>Hwang, Byung-Hak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1090_tran_90963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Byung-Hak</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Byung-Hak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chromatic quasisymmetric functions and noncommutative -symmetric functions</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2024-02-13</date><risdate>2024</risdate><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>For a natural unit interval order P P , we describe proper colorings of the incomparability graph of P P in the language of heaps. We also introduce a combinatorial operation, called a local flip , on the heaps. This operation defines an equivalence relation on the proper colorings, and the equivalence relation refines the ascent statistic introduced by Shareshian and Wachs. In addition, we define an analogue of noncommutative symmetric functions introduced by Fomin and Greene, with respect to P P . We establish a duality between the chromatic quasisymmetric function of P P and these noncommutative symmetric functions. This duality leads us to positive expansions of the chromatic quasisymmetric functions into several symmetric function bases. In particular, we present some partial results for the e e -positivity conjecture.</abstract><doi>10.1090/tran/9096</doi></addata></record>
fulltext fulltext
identifier ISSN: 0002-9947
ispartof Transactions of the American Mathematical Society, 2024-02
issn 0002-9947
1088-6850
language eng
recordid cdi_crossref_primary_10_1090_tran_9096
source American Mathematical Society
title Chromatic quasisymmetric functions and noncommutative -symmetric functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A44%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chromatic%20quasisymmetric%20functions%20and%20noncommutative%20-symmetric%20functions&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Hwang,%20Byung-Hak&rft.date=2024-02-13&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/9096&rft_dat=%3Ccrossref%3E10_1090_tran_9096%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-crossref_primary_10_1090_tran_90963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true