Loading…
Recombinant Silk Hydrogel as a Novel Dermal Filler Component: Preclinical Safety and Efficacy Studies of a New Class of Tissue Fillers
Abstract Background Hyaluronic acid-based tissue fillers are commonly utilized in reconstructive surgery as well as for aesthetic augmentation. A new type of recombinant silk-based tissue filler might pose a beneficial alternative for surgeons and patients. Objectives The aim of this study was to co...
Saved in:
Published in: | Aesthetic surgery journal 2020-08, Vol.40 (9), p.511-518 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Background
Hyaluronic acid-based tissue fillers are commonly utilized in reconstructive surgery as well as for aesthetic augmentation. A new type of recombinant silk-based tissue filler might pose a beneficial alternative for surgeons and patients.
Objectives
The aim of this study was to compare injectability, reshaping, tolerability, and postimplantation behavior of dermal filler preparations containing recombinant silk hydrogel with a commercially available hyaluronic acid filler in 2 different animal models.
Methods
Recombinant silk hydrogel as standalone preparation or as a mixture with commercial stabilized hyaluronic acid was tested in rodent and porcine animal models. The preparations were analyzed in detail and administered subdermally followed by clinical, volumetric, and histological monitoring of the subdermal depots over several months.
Results
Applicability, dosing, and tissue distribution of the filler preparations were facilitated in the presence of silk hydrogel. No clinical complications attributable to tissue filler application were recorded. State-of-the art methods, such as high-performance magnetic resonance imaging, were applied successfully to monitor the volumetric development of the filler depots in live animals.
Conclusions
The preclinical data demonstrate the basic suitability of recombinant silk hydrogel as safe and convenient tissue filler ingredient. Due to its shear thinning properties, recombinant silk hydrogel has the potential for less painful application, comfortable aesthetic reshaping immediately after administration, and negligible postoperative discomfort. |
---|---|
ISSN: | 1090-820X 1527-330X |
DOI: | 10.1093/asj/sjaa059 |