Loading…
Density-based binning of gene clusters to infer function or evolutionary history using GeneGrouper
Abstract Motivation Identifying variant forms of gene clusters of interest in phylogenetically proximate and distant taxa can help to infer their evolutionary histories and functions. Conserved gene clusters may differ by only a few genes, but these small differences can in turn induce substantial p...
Saved in:
Published in: | Bioinformatics (Oxford, England) England), 2022-01, Vol.38 (3), p.612-620 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c401t-c2fa568ed737f66f66625d46005ec6e6c070dbb457adef6ce6764b39d116119b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c401t-c2fa568ed737f66f66625d46005ec6e6c070dbb457adef6ce6764b39d116119b3 |
container_end_page | 620 |
container_issue | 3 |
container_start_page | 612 |
container_title | Bioinformatics (Oxford, England) |
container_volume | 38 |
creator | McFarland, Alexander G Kennedy, Nolan W Mills, Carolyn E Tullman-Ercek, Danielle Huttenhower, Curtis Hartmann, Erica M |
description | Abstract
Motivation
Identifying variant forms of gene clusters of interest in phylogenetically proximate and distant taxa can help to infer their evolutionary histories and functions. Conserved gene clusters may differ by only a few genes, but these small differences can in turn induce substantial phenotypes, such as by the formation of pseudogenes or insertions interrupting regulation. Particularly as microbial genomes and metagenomic assemblies become increasingly abundant, unsupervised grouping of similar, but not necessarily identical, gene clusters into consistent bins can provide a population-level understanding of their gene content variation and functional homology.
Results
We developed GeneGrouper, a command-line tool that uses a density-based clustering method to group gene clusters into bins. GeneGrouper demonstrated high recall and precision in benchmarks for the detection of the 23-gene Salmonella enterica LT2 Pdu gene cluster and four-gene Pseudomonas aeruginosa PAO1 Mex gene cluster among 435 genomes spanning mixed taxa. In a subsequent application investigating the diversity and impact of gene-complete and -incomplete LT2 Pdu gene clusters in 1130 S.enterica genomes, GeneGrouper identified a novel, frequently occurring pduN pseudogene. When investigated in vivo, introduction of the pduN pseudogene negatively impacted microcompartment formation. We next demonstrated the versatility of GeneGrouper by clustering distant homologous gene clusters and variable gene clusters found in integrative and conjugative elements.
Availability and implementation
GeneGrouper software and code are publicly available at https://pypi.org/project/GeneGrouper/.
Supplementary information
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btab752 |
format | article |
fullrecord | <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_bioinformatics_btab752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btab752</oup_id><sourcerecordid>10.1093/bioinformatics/btab752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-c2fa568ed737f66f66625d46005ec6e6c070dbb457adef6ce6764b39d116119b3</originalsourceid><addsrcrecordid>eNqNUNFKAzEQDKLYWv2Fkh84m1zuNr1HqVqFgi_6fFxymxppk5LkhP69Ka0F34SF2YWZ2d0hZMrZPWeNmCnrrTM-bLtkdZyp1ClZlxdkzAXIoppzfnnumRiRmxi_GGM1q-GajEQlRdXAfEzUI7po075QXcSeKuucdWvqDV2jQ6o3Q0wYIk2e5n0YqBmcTtY76gPFb78ZDkMX9vTTxuQzDvFgsMzqZfDDDsMtuTLdJuLdCSfk4_npffFSrN6Wr4uHVaErxlOhS9PVMMdeCmkAckFZ9xXko1EDgmaS9UpVtex6NKARJFRKND3nwHmjxITA0VcHH2NA0-6C3ebTWs7aQ2jt39DaU2hZOD0Kd4PaYn-W_aaUCfxIyP_81_QHTm6Cgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Density-based binning of gene clusters to infer function or evolutionary history using GeneGrouper</title><source>Open Access: Oxford University Press Open Journals</source><creator>McFarland, Alexander G ; Kennedy, Nolan W ; Mills, Carolyn E ; Tullman-Ercek, Danielle ; Huttenhower, Curtis ; Hartmann, Erica M</creator><contributor>Robinson, Peter</contributor><creatorcontrib>McFarland, Alexander G ; Kennedy, Nolan W ; Mills, Carolyn E ; Tullman-Ercek, Danielle ; Huttenhower, Curtis ; Hartmann, Erica M ; Robinson, Peter</creatorcontrib><description>Abstract
Motivation
Identifying variant forms of gene clusters of interest in phylogenetically proximate and distant taxa can help to infer their evolutionary histories and functions. Conserved gene clusters may differ by only a few genes, but these small differences can in turn induce substantial phenotypes, such as by the formation of pseudogenes or insertions interrupting regulation. Particularly as microbial genomes and metagenomic assemblies become increasingly abundant, unsupervised grouping of similar, but not necessarily identical, gene clusters into consistent bins can provide a population-level understanding of their gene content variation and functional homology.
Results
We developed GeneGrouper, a command-line tool that uses a density-based clustering method to group gene clusters into bins. GeneGrouper demonstrated high recall and precision in benchmarks for the detection of the 23-gene Salmonella enterica LT2 Pdu gene cluster and four-gene Pseudomonas aeruginosa PAO1 Mex gene cluster among 435 genomes spanning mixed taxa. In a subsequent application investigating the diversity and impact of gene-complete and -incomplete LT2 Pdu gene clusters in 1130 S.enterica genomes, GeneGrouper identified a novel, frequently occurring pduN pseudogene. When investigated in vivo, introduction of the pduN pseudogene negatively impacted microcompartment formation. We next demonstrated the versatility of GeneGrouper by clustering distant homologous gene clusters and variable gene clusters found in integrative and conjugative elements.
Availability and implementation
GeneGrouper software and code are publicly available at https://pypi.org/project/GeneGrouper/.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btab752</identifier><identifier>PMID: 34734968</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Genome, Microbial ; Metagenome ; Metagenomics - methods ; Multigene Family ; Software</subject><ispartof>Bioinformatics (Oxford, England), 2022-01, Vol.38 (3), p.612-620</ispartof><rights>The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-c2fa568ed737f66f66625d46005ec6e6c070dbb457adef6ce6764b39d116119b3</citedby><cites>FETCH-LOGICAL-c401t-c2fa568ed737f66f66625d46005ec6e6c070dbb457adef6ce6764b39d116119b3</cites><orcidid>0000-0002-1803-3623 ; 0000-0002-1110-0096</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btab752$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34734968$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Robinson, Peter</contributor><creatorcontrib>McFarland, Alexander G</creatorcontrib><creatorcontrib>Kennedy, Nolan W</creatorcontrib><creatorcontrib>Mills, Carolyn E</creatorcontrib><creatorcontrib>Tullman-Ercek, Danielle</creatorcontrib><creatorcontrib>Huttenhower, Curtis</creatorcontrib><creatorcontrib>Hartmann, Erica M</creatorcontrib><title>Density-based binning of gene clusters to infer function or evolutionary history using GeneGrouper</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Abstract
Motivation
Identifying variant forms of gene clusters of interest in phylogenetically proximate and distant taxa can help to infer their evolutionary histories and functions. Conserved gene clusters may differ by only a few genes, but these small differences can in turn induce substantial phenotypes, such as by the formation of pseudogenes or insertions interrupting regulation. Particularly as microbial genomes and metagenomic assemblies become increasingly abundant, unsupervised grouping of similar, but not necessarily identical, gene clusters into consistent bins can provide a population-level understanding of their gene content variation and functional homology.
Results
We developed GeneGrouper, a command-line tool that uses a density-based clustering method to group gene clusters into bins. GeneGrouper demonstrated high recall and precision in benchmarks for the detection of the 23-gene Salmonella enterica LT2 Pdu gene cluster and four-gene Pseudomonas aeruginosa PAO1 Mex gene cluster among 435 genomes spanning mixed taxa. In a subsequent application investigating the diversity and impact of gene-complete and -incomplete LT2 Pdu gene clusters in 1130 S.enterica genomes, GeneGrouper identified a novel, frequently occurring pduN pseudogene. When investigated in vivo, introduction of the pduN pseudogene negatively impacted microcompartment formation. We next demonstrated the versatility of GeneGrouper by clustering distant homologous gene clusters and variable gene clusters found in integrative and conjugative elements.
Availability and implementation
GeneGrouper software and code are publicly available at https://pypi.org/project/GeneGrouper/.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><subject>Genome, Microbial</subject><subject>Metagenome</subject><subject>Metagenomics - methods</subject><subject>Multigene Family</subject><subject>Software</subject><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNUNFKAzEQDKLYWv2Fkh84m1zuNr1HqVqFgi_6fFxymxppk5LkhP69Ka0F34SF2YWZ2d0hZMrZPWeNmCnrrTM-bLtkdZyp1ClZlxdkzAXIoppzfnnumRiRmxi_GGM1q-GajEQlRdXAfEzUI7po075QXcSeKuucdWvqDV2jQ6o3Q0wYIk2e5n0YqBmcTtY76gPFb78ZDkMX9vTTxuQzDvFgsMzqZfDDDsMtuTLdJuLdCSfk4_npffFSrN6Wr4uHVaErxlOhS9PVMMdeCmkAckFZ9xXko1EDgmaS9UpVtex6NKARJFRKND3nwHmjxITA0VcHH2NA0-6C3ebTWs7aQ2jt39DaU2hZOD0Kd4PaYn-W_aaUCfxIyP_81_QHTm6Cgg</recordid><startdate>20220112</startdate><enddate>20220112</enddate><creator>McFarland, Alexander G</creator><creator>Kennedy, Nolan W</creator><creator>Mills, Carolyn E</creator><creator>Tullman-Ercek, Danielle</creator><creator>Huttenhower, Curtis</creator><creator>Hartmann, Erica M</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1803-3623</orcidid><orcidid>https://orcid.org/0000-0002-1110-0096</orcidid></search><sort><creationdate>20220112</creationdate><title>Density-based binning of gene clusters to infer function or evolutionary history using GeneGrouper</title><author>McFarland, Alexander G ; Kennedy, Nolan W ; Mills, Carolyn E ; Tullman-Ercek, Danielle ; Huttenhower, Curtis ; Hartmann, Erica M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-c2fa568ed737f66f66625d46005ec6e6c070dbb457adef6ce6764b39d116119b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Genome, Microbial</topic><topic>Metagenome</topic><topic>Metagenomics - methods</topic><topic>Multigene Family</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McFarland, Alexander G</creatorcontrib><creatorcontrib>Kennedy, Nolan W</creatorcontrib><creatorcontrib>Mills, Carolyn E</creatorcontrib><creatorcontrib>Tullman-Ercek, Danielle</creatorcontrib><creatorcontrib>Huttenhower, Curtis</creatorcontrib><creatorcontrib>Hartmann, Erica M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>McFarland, Alexander G</au><au>Kennedy, Nolan W</au><au>Mills, Carolyn E</au><au>Tullman-Ercek, Danielle</au><au>Huttenhower, Curtis</au><au>Hartmann, Erica M</au><au>Robinson, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Density-based binning of gene clusters to infer function or evolutionary history using GeneGrouper</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2022-01-12</date><risdate>2022</risdate><volume>38</volume><issue>3</issue><spage>612</spage><epage>620</epage><pages>612-620</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Abstract
Motivation
Identifying variant forms of gene clusters of interest in phylogenetically proximate and distant taxa can help to infer their evolutionary histories and functions. Conserved gene clusters may differ by only a few genes, but these small differences can in turn induce substantial phenotypes, such as by the formation of pseudogenes or insertions interrupting regulation. Particularly as microbial genomes and metagenomic assemblies become increasingly abundant, unsupervised grouping of similar, but not necessarily identical, gene clusters into consistent bins can provide a population-level understanding of their gene content variation and functional homology.
Results
We developed GeneGrouper, a command-line tool that uses a density-based clustering method to group gene clusters into bins. GeneGrouper demonstrated high recall and precision in benchmarks for the detection of the 23-gene Salmonella enterica LT2 Pdu gene cluster and four-gene Pseudomonas aeruginosa PAO1 Mex gene cluster among 435 genomes spanning mixed taxa. In a subsequent application investigating the diversity and impact of gene-complete and -incomplete LT2 Pdu gene clusters in 1130 S.enterica genomes, GeneGrouper identified a novel, frequently occurring pduN pseudogene. When investigated in vivo, introduction of the pduN pseudogene negatively impacted microcompartment formation. We next demonstrated the versatility of GeneGrouper by clustering distant homologous gene clusters and variable gene clusters found in integrative and conjugative elements.
Availability and implementation
GeneGrouper software and code are publicly available at https://pypi.org/project/GeneGrouper/.
Supplementary information
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>34734968</pmid><doi>10.1093/bioinformatics/btab752</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1803-3623</orcidid><orcidid>https://orcid.org/0000-0002-1110-0096</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics (Oxford, England), 2022-01, Vol.38 (3), p.612-620 |
issn | 1367-4803 1367-4811 |
language | eng |
recordid | cdi_crossref_primary_10_1093_bioinformatics_btab752 |
source | Open Access: Oxford University Press Open Journals |
subjects | Genome, Microbial Metagenome Metagenomics - methods Multigene Family Software |
title | Density-based binning of gene clusters to infer function or evolutionary history using GeneGrouper |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A29%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Density-based%20binning%20of%20gene%20clusters%20to%20infer%20function%20or%20evolutionary%20history%20using%20GeneGrouper&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=McFarland,%20Alexander%20G&rft.date=2022-01-12&rft.volume=38&rft.issue=3&rft.spage=612&rft.epage=620&rft.pages=612-620&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btab752&rft_dat=%3Coup_TOX%3E10.1093/bioinformatics/btab752%3C/oup_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-c2fa568ed737f66f66625d46005ec6e6c070dbb457adef6ce6764b39d116119b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/34734968&rft_oup_id=10.1093/bioinformatics/btab752&rfr_iscdi=true |