Loading…
New quality measure for SNP array based CNV detection
Only a few large systematic studies have evaluated the impact of copy number variants (CNVs) on common diseases. Several million individuals have been genotyped on single nucleotide variation arrays, which could be used for genome-wide CNVs association studies. However, CNV calls remain prone to fal...
Saved in:
Published in: | Bioinformatics (Oxford, England) England), 2016-11, Vol.32 (21), p.3298-3305 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c389t-9632040b5da2670fe99c7dc677631eb131dc6feb0c776a145f90b0ec9675d5e23 |
---|---|
cites | cdi_FETCH-LOGICAL-c389t-9632040b5da2670fe99c7dc677631eb131dc6feb0c776a145f90b0ec9675d5e23 |
container_end_page | 3305 |
container_issue | 21 |
container_start_page | 3298 |
container_title | Bioinformatics (Oxford, England) |
container_volume | 32 |
creator | Macé, A Tuke, M A Beckmann, J S Lin, L Jacquemont, S Weedon, M N Reymond, A Kutalik, Z |
description | Only a few large systematic studies have evaluated the impact of copy number variants (CNVs) on common diseases. Several million individuals have been genotyped on single nucleotide variation arrays, which could be used for genome-wide CNVs association studies. However, CNV calls remain prone to false positives and only empirical filtering strategies exist in the literature. To overcome this issue, we defined a new quality score (QS) estimating the probability of a CNV called by PennCNV to be confirmed by other software.
Out-of-sample comparison showed that the correlation between the consensus CNV status and the QS is twice as high as it is for any previously proposed CNV filters. ROC curves displayed an AUC higher than 0.8 and simulations showed an increase up to 20% in statistical power when using QS in comparison to other filtering strategies. Superior performance was confirmed also for alternative consensus CNV definition and through improving known CNV-trait associations.
http://goo.gl/T6yuFM CONTACT: zoltan.kutalik@unil.ch or aurelien@mace@unil.chSupplementary information: Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btw477 |
format | article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_bioinformatics_btw477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27402902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-9632040b5da2670fe99c7dc677631eb131dc6feb0c776a145f90b0ec9675d5e23</originalsourceid><addsrcrecordid>eNpVkF1LwzAUhoMobk5_gpI_UHfSNMlyKUWnMKrgx21J0lOorOtMUkb_vZXqwKtzzgvPC-ch5JrBLQPNl7bpml3d-dbExoWljYdMqRMyZ1yqJFsxdnrcgc_IRQifACBAyHMyS1UGqYZ0TkSBB_rVm20TB9qiCb1HOtbS1-KFGu_NQK0JWNG8-KAVRnSx6XaX5Kw224BXv3NB3h_u3_LHZPO8fsrvNonjKx0TLXkKGVhRmVQqqFFrpyonlZKcoWWcjUeNFtyYGJaJWoMFdFoqUQlM-YKIqdf5LgSPdbn3TWv8UDIofzSU_zWUk4aRu5m4fW9brI7U39_8G0tQXbs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>New quality measure for SNP array based CNV detection</title><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Macé, A ; Tuke, M A ; Beckmann, J S ; Lin, L ; Jacquemont, S ; Weedon, M N ; Reymond, A ; Kutalik, Z</creator><creatorcontrib>Macé, A ; Tuke, M A ; Beckmann, J S ; Lin, L ; Jacquemont, S ; Weedon, M N ; Reymond, A ; Kutalik, Z</creatorcontrib><description>Only a few large systematic studies have evaluated the impact of copy number variants (CNVs) on common diseases. Several million individuals have been genotyped on single nucleotide variation arrays, which could be used for genome-wide CNVs association studies. However, CNV calls remain prone to false positives and only empirical filtering strategies exist in the literature. To overcome this issue, we defined a new quality score (QS) estimating the probability of a CNV called by PennCNV to be confirmed by other software.
Out-of-sample comparison showed that the correlation between the consensus CNV status and the QS is twice as high as it is for any previously proposed CNV filters. ROC curves displayed an AUC higher than 0.8 and simulations showed an increase up to 20% in statistical power when using QS in comparison to other filtering strategies. Superior performance was confirmed also for alternative consensus CNV definition and through improving known CNV-trait associations.
http://goo.gl/T6yuFM CONTACT: zoltan.kutalik@unil.ch or aurelien@mace@unil.chSupplementary information: Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btw477</identifier><identifier>PMID: 27402902</identifier><language>eng</language><publisher>England</publisher><subject>DNA Copy Number Variations ; Genome-Wide Association Study ; Humans ; Polymorphism, Single Nucleotide ; Software</subject><ispartof>Bioinformatics (Oxford, England), 2016-11, Vol.32 (21), p.3298-3305</ispartof><rights>The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-9632040b5da2670fe99c7dc677631eb131dc6feb0c776a145f90b0ec9675d5e23</citedby><cites>FETCH-LOGICAL-c389t-9632040b5da2670fe99c7dc677631eb131dc6feb0c776a145f90b0ec9675d5e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27402902$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Macé, A</creatorcontrib><creatorcontrib>Tuke, M A</creatorcontrib><creatorcontrib>Beckmann, J S</creatorcontrib><creatorcontrib>Lin, L</creatorcontrib><creatorcontrib>Jacquemont, S</creatorcontrib><creatorcontrib>Weedon, M N</creatorcontrib><creatorcontrib>Reymond, A</creatorcontrib><creatorcontrib>Kutalik, Z</creatorcontrib><title>New quality measure for SNP array based CNV detection</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Only a few large systematic studies have evaluated the impact of copy number variants (CNVs) on common diseases. Several million individuals have been genotyped on single nucleotide variation arrays, which could be used for genome-wide CNVs association studies. However, CNV calls remain prone to false positives and only empirical filtering strategies exist in the literature. To overcome this issue, we defined a new quality score (QS) estimating the probability of a CNV called by PennCNV to be confirmed by other software.
Out-of-sample comparison showed that the correlation between the consensus CNV status and the QS is twice as high as it is for any previously proposed CNV filters. ROC curves displayed an AUC higher than 0.8 and simulations showed an increase up to 20% in statistical power when using QS in comparison to other filtering strategies. Superior performance was confirmed also for alternative consensus CNV definition and through improving known CNV-trait associations.
http://goo.gl/T6yuFM CONTACT: zoltan.kutalik@unil.ch or aurelien@mace@unil.chSupplementary information: Supplementary data are available at Bioinformatics online.</description><subject>DNA Copy Number Variations</subject><subject>Genome-Wide Association Study</subject><subject>Humans</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Software</subject><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpVkF1LwzAUhoMobk5_gpI_UHfSNMlyKUWnMKrgx21J0lOorOtMUkb_vZXqwKtzzgvPC-ch5JrBLQPNl7bpml3d-dbExoWljYdMqRMyZ1yqJFsxdnrcgc_IRQifACBAyHMyS1UGqYZ0TkSBB_rVm20TB9qiCb1HOtbS1-KFGu_NQK0JWNG8-KAVRnSx6XaX5Kw224BXv3NB3h_u3_LHZPO8fsrvNonjKx0TLXkKGVhRmVQqqFFrpyonlZKcoWWcjUeNFtyYGJaJWoMFdFoqUQlM-YKIqdf5LgSPdbn3TWv8UDIofzSU_zWUk4aRu5m4fW9brI7U39_8G0tQXbs</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Macé, A</creator><creator>Tuke, M A</creator><creator>Beckmann, J S</creator><creator>Lin, L</creator><creator>Jacquemont, S</creator><creator>Weedon, M N</creator><creator>Reymond, A</creator><creator>Kutalik, Z</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161101</creationdate><title>New quality measure for SNP array based CNV detection</title><author>Macé, A ; Tuke, M A ; Beckmann, J S ; Lin, L ; Jacquemont, S ; Weedon, M N ; Reymond, A ; Kutalik, Z</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-9632040b5da2670fe99c7dc677631eb131dc6feb0c776a145f90b0ec9675d5e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>DNA Copy Number Variations</topic><topic>Genome-Wide Association Study</topic><topic>Humans</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Macé, A</creatorcontrib><creatorcontrib>Tuke, M A</creatorcontrib><creatorcontrib>Beckmann, J S</creatorcontrib><creatorcontrib>Lin, L</creatorcontrib><creatorcontrib>Jacquemont, S</creatorcontrib><creatorcontrib>Weedon, M N</creatorcontrib><creatorcontrib>Reymond, A</creatorcontrib><creatorcontrib>Kutalik, Z</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Macé, A</au><au>Tuke, M A</au><au>Beckmann, J S</au><au>Lin, L</au><au>Jacquemont, S</au><au>Weedon, M N</au><au>Reymond, A</au><au>Kutalik, Z</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New quality measure for SNP array based CNV detection</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2016-11-01</date><risdate>2016</risdate><volume>32</volume><issue>21</issue><spage>3298</spage><epage>3305</epage><pages>3298-3305</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Only a few large systematic studies have evaluated the impact of copy number variants (CNVs) on common diseases. Several million individuals have been genotyped on single nucleotide variation arrays, which could be used for genome-wide CNVs association studies. However, CNV calls remain prone to false positives and only empirical filtering strategies exist in the literature. To overcome this issue, we defined a new quality score (QS) estimating the probability of a CNV called by PennCNV to be confirmed by other software.
Out-of-sample comparison showed that the correlation between the consensus CNV status and the QS is twice as high as it is for any previously proposed CNV filters. ROC curves displayed an AUC higher than 0.8 and simulations showed an increase up to 20% in statistical power when using QS in comparison to other filtering strategies. Superior performance was confirmed also for alternative consensus CNV definition and through improving known CNV-trait associations.
http://goo.gl/T6yuFM CONTACT: zoltan.kutalik@unil.ch or aurelien@mace@unil.chSupplementary information: Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pmid>27402902</pmid><doi>10.1093/bioinformatics/btw477</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics (Oxford, England), 2016-11, Vol.32 (21), p.3298-3305 |
issn | 1367-4803 1367-4811 |
language | eng |
recordid | cdi_crossref_primary_10_1093_bioinformatics_btw477 |
source | Oxford Journals Open Access Collection; PubMed Central |
subjects | DNA Copy Number Variations Genome-Wide Association Study Humans Polymorphism, Single Nucleotide Software |
title | New quality measure for SNP array based CNV detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A27%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20quality%20measure%20for%20SNP%20array%20based%20CNV%20detection&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Mac%C3%A9,%20A&rft.date=2016-11-01&rft.volume=32&rft.issue=21&rft.spage=3298&rft.epage=3305&rft.pages=3298-3305&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btw477&rft_dat=%3Cpubmed_cross%3E27402902%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-9632040b5da2670fe99c7dc677631eb131dc6feb0c776a145f90b0ec9675d5e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/27402902&rfr_iscdi=true |