Loading…

Hearing sensitivity is more relevant to acoustic conspicuousness than to mechanical constraints in crambid moths

Abstract Moths evolved tympanal hearing organs to detect the echolocation calls of predatory bats. Moths’ auditory responses have been examined mainly for their sensitivity to the frequencies of bat cries: tympanate moths are basically tuned to the call frequencies of sympatric bats. Here, we add th...

Full description

Saved in:
Bibliographic Details
Published in:Biological journal of the Linnean Society 2017-05, Vol.121 (1), p.174-184
Main Authors: Nakano, Ryo, Mason, Andrew C.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Moths evolved tympanal hearing organs to detect the echolocation calls of predatory bats. Moths’ auditory responses have been examined mainly for their sensitivity to the frequencies of bat cries: tympanate moths are basically tuned to the call frequencies of sympatric bats. Here, we add the finding that hearing sensitivity to ‘pulse duration’ in crambid moths is also affected by predation pressure from echolocating bats. Analysis of interspecific variation showed that minimum auditory thresholds had a significantly negative relationship with the forewing surface area, that is, acoustic conspicuousness to bat sonar, but no relationship with head width, which was assumed to correlate with tympanal organ size. Auditory thresholds increased as pulses shortened in the 1–10 ms duration range, and conspicuous moths with larger wing areas had lower thresholds than smaller moths. By contrast, ‘intraspecific’ variation, within a single population of the lurcerne moth, revealed no relationship between forewing area and any auditory characteristics. Moth hearing adapts to the echolocation pulse duration of sympatric bat communities, suggesting that evolutionary modification of hearing sensitivity is related to acoustic conspicuousness based on moth wing area.
ISSN:0024-4066
1095-8312
DOI:10.1093/biolinnean/blw029