Loading…
Towards a practicable Bayesian nonparametric density estimator
SUMMARY Nonparametric density estimators smooth the empirical distribution function and are sensitive to the choice of smoothing parameters. This paper develops an hierarchical Bayes formulation for the smoothing problem. The prior distribution for the density function is the logistic normal process...
Saved in:
Published in: | Biometrika 1991-09, Vol.78 (3), p.531-543 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c335t-1018ca849199d6f3e06eb32f17cbae759de74da70beffc8fe8f53b8d74af367b3 |
---|---|
cites | |
container_end_page | 543 |
container_issue | 3 |
container_start_page | 531 |
container_title | Biometrika |
container_volume | 78 |
creator | Lenk, Peter J. |
description | SUMMARY Nonparametric density estimators smooth the empirical distribution function and are sensitive to the choice of smoothing parameters. This paper develops an hierarchical Bayes formulation for the smoothing problem. The prior distribution for the density function is the logistic normal process, which is a logistic transform of a Gaussian process. The covariance of the Gaussian process is a smoothing kernel and has parameters that control the degree of smoothness. The likelihood function for the smoothing parameters and their posterior density are computed from an approximation of the joint moments of the logistic normal process. The marginal predictive density mixes the conditional predictive density given the smoothing parameters with their posterior distribution. This hierarchical Bayes analysis provides a fully automated, data-dependent method for smoothing and selects the amount of smoothing that is coherent with its prior specification. |
doi_str_mv | 10.1093/biomet/78.3.531 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_biomet_78_3_531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2337022</jstor_id><sourcerecordid>2337022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-1018ca849199d6f3e06eb32f17cbae759de74da70beffc8fe8f53b8d74af367b3</originalsourceid><addsrcrecordid>eNpNj01Lw0AQhhdRsFbPXnPwmnY3sx_JRdBirVARpYL0skw2u7C1TcJuQPvvTYlULzMMPO_LPIRcMzphtIBp6Zud7aYqn8BEADshI8YlT0EwekpGlFKZAuf8nFzEuDmcUsgRuV01XxiqmGDSBjSdN1hubXKPexs91knd1C0G7JuDN0ll6-i7fWJj53fYNeGSnDncRnv1u8fkff6wmi3S5cvj0-xumRoA0aWMstxgzgtWFJV0YKm0JWSOKVOiVaKorOIVKlpa50zubO4ElHmlODqQqoQxmQ69JjQxBut0G_oPwl4zqg_6etDXKtege_0-cTMkWowGty5gbXw8xgRQISj8YZvY6_xvzYCqfoCiWdZj6YD52NnvI4bhU0sFSujFx1rP6ev67bnI9Bp-ABs_eCM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Towards a practicable Bayesian nonparametric density estimator</title><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><source>Oxford University Press Archive</source><creator>Lenk, Peter J.</creator><creatorcontrib>Lenk, Peter J.</creatorcontrib><description>SUMMARY Nonparametric density estimators smooth the empirical distribution function and are sensitive to the choice of smoothing parameters. This paper develops an hierarchical Bayes formulation for the smoothing problem. The prior distribution for the density function is the logistic normal process, which is a logistic transform of a Gaussian process. The covariance of the Gaussian process is a smoothing kernel and has parameters that control the degree of smoothness. The likelihood function for the smoothing parameters and their posterior density are computed from an approximation of the joint moments of the logistic normal process. The marginal predictive density mixes the conditional predictive density given the smoothing parameters with their posterior distribution. This hierarchical Bayes analysis provides a fully automated, data-dependent method for smoothing and selects the amount of smoothing that is coherent with its prior specification.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/78.3.531</identifier><identifier>CODEN: BIOKAX</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Approximation ; Covariance ; Data smoothing ; Density ; Density estimation ; Estimators ; Exact sciences and technology ; Hierarchical Bayes ; Histograms ; Logistic normal process ; Logistics ; Mathematical independent variables ; Mathematics ; Probability and statistics ; Sciences and techniques of general use ; Smoothing ; Statistical variance ; Statistics</subject><ispartof>Biometrika, 1991-09, Vol.78 (3), p.531-543</ispartof><rights>Copyright 1991 Biometrika Trust</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-1018ca849199d6f3e06eb32f17cbae759de74da70beffc8fe8f53b8d74af367b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2337022$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2337022$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,58213,58446</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5305503$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lenk, Peter J.</creatorcontrib><title>Towards a practicable Bayesian nonparametric density estimator</title><title>Biometrika</title><description>SUMMARY Nonparametric density estimators smooth the empirical distribution function and are sensitive to the choice of smoothing parameters. This paper develops an hierarchical Bayes formulation for the smoothing problem. The prior distribution for the density function is the logistic normal process, which is a logistic transform of a Gaussian process. The covariance of the Gaussian process is a smoothing kernel and has parameters that control the degree of smoothness. The likelihood function for the smoothing parameters and their posterior density are computed from an approximation of the joint moments of the logistic normal process. The marginal predictive density mixes the conditional predictive density given the smoothing parameters with their posterior distribution. This hierarchical Bayes analysis provides a fully automated, data-dependent method for smoothing and selects the amount of smoothing that is coherent with its prior specification.</description><subject>Approximation</subject><subject>Covariance</subject><subject>Data smoothing</subject><subject>Density</subject><subject>Density estimation</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Hierarchical Bayes</subject><subject>Histograms</subject><subject>Logistic normal process</subject><subject>Logistics</subject><subject>Mathematical independent variables</subject><subject>Mathematics</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Smoothing</subject><subject>Statistical variance</subject><subject>Statistics</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNpNj01Lw0AQhhdRsFbPXnPwmnY3sx_JRdBirVARpYL0skw2u7C1TcJuQPvvTYlULzMMPO_LPIRcMzphtIBp6Zud7aYqn8BEADshI8YlT0EwekpGlFKZAuf8nFzEuDmcUsgRuV01XxiqmGDSBjSdN1hubXKPexs91knd1C0G7JuDN0ll6-i7fWJj53fYNeGSnDncRnv1u8fkff6wmi3S5cvj0-xumRoA0aWMstxgzgtWFJV0YKm0JWSOKVOiVaKorOIVKlpa50zubO4ElHmlODqQqoQxmQ69JjQxBut0G_oPwl4zqg_6etDXKtege_0-cTMkWowGty5gbXw8xgRQISj8YZvY6_xvzYCqfoCiWdZj6YD52NnvI4bhU0sFSujFx1rP6ev67bnI9Bp-ABs_eCM</recordid><startdate>19910901</startdate><enddate>19910901</enddate><creator>Lenk, Peter J.</creator><general>Oxford University Press</general><general>Biometrika Trust</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19910901</creationdate><title>Towards a practicable Bayesian nonparametric density estimator</title><author>Lenk, Peter J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-1018ca849199d6f3e06eb32f17cbae759de74da70beffc8fe8f53b8d74af367b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Approximation</topic><topic>Covariance</topic><topic>Data smoothing</topic><topic>Density</topic><topic>Density estimation</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Hierarchical Bayes</topic><topic>Histograms</topic><topic>Logistic normal process</topic><topic>Logistics</topic><topic>Mathematical independent variables</topic><topic>Mathematics</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Smoothing</topic><topic>Statistical variance</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lenk, Peter J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lenk, Peter J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards a practicable Bayesian nonparametric density estimator</atitle><jtitle>Biometrika</jtitle><date>1991-09-01</date><risdate>1991</risdate><volume>78</volume><issue>3</issue><spage>531</spage><epage>543</epage><pages>531-543</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><coden>BIOKAX</coden><abstract>SUMMARY Nonparametric density estimators smooth the empirical distribution function and are sensitive to the choice of smoothing parameters. This paper develops an hierarchical Bayes formulation for the smoothing problem. The prior distribution for the density function is the logistic normal process, which is a logistic transform of a Gaussian process. The covariance of the Gaussian process is a smoothing kernel and has parameters that control the degree of smoothness. The likelihood function for the smoothing parameters and their posterior density are computed from an approximation of the joint moments of the logistic normal process. The marginal predictive density mixes the conditional predictive density given the smoothing parameters with their posterior distribution. This hierarchical Bayes analysis provides a fully automated, data-dependent method for smoothing and selects the amount of smoothing that is coherent with its prior specification.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/biomet/78.3.531</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3444 |
ispartof | Biometrika, 1991-09, Vol.78 (3), p.531-543 |
issn | 0006-3444 1464-3510 |
language | eng |
recordid | cdi_crossref_primary_10_1093_biomet_78_3_531 |
source | JSTOR Archival Journals and Primary Sources Collection【Remote access available】; Oxford University Press Archive |
subjects | Approximation Covariance Data smoothing Density Density estimation Estimators Exact sciences and technology Hierarchical Bayes Histograms Logistic normal process Logistics Mathematical independent variables Mathematics Probability and statistics Sciences and techniques of general use Smoothing Statistical variance Statistics |
title | Towards a practicable Bayesian nonparametric density estimator |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A47%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20a%20practicable%20Bayesian%20nonparametric%20density%20estimator&rft.jtitle=Biometrika&rft.au=Lenk,%20Peter%20J.&rft.date=1991-09-01&rft.volume=78&rft.issue=3&rft.spage=531&rft.epage=543&rft.pages=531-543&rft.issn=0006-3444&rft.eissn=1464-3510&rft.coden=BIOKAX&rft_id=info:doi/10.1093/biomet/78.3.531&rft_dat=%3Cjstor_cross%3E2337022%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-1018ca849199d6f3e06eb32f17cbae759de74da70beffc8fe8f53b8d74af367b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2337022&rfr_iscdi=true |