Loading…

Towards a practicable Bayesian nonparametric density estimator

SUMMARY Nonparametric density estimators smooth the empirical distribution function and are sensitive to the choice of smoothing parameters. This paper develops an hierarchical Bayes formulation for the smoothing problem. The prior distribution for the density function is the logistic normal process...

Full description

Saved in:
Bibliographic Details
Published in:Biometrika 1991-09, Vol.78 (3), p.531-543
Main Author: Lenk, Peter J.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c335t-1018ca849199d6f3e06eb32f17cbae759de74da70beffc8fe8f53b8d74af367b3
cites
container_end_page 543
container_issue 3
container_start_page 531
container_title Biometrika
container_volume 78
creator Lenk, Peter J.
description SUMMARY Nonparametric density estimators smooth the empirical distribution function and are sensitive to the choice of smoothing parameters. This paper develops an hierarchical Bayes formulation for the smoothing problem. The prior distribution for the density function is the logistic normal process, which is a logistic transform of a Gaussian process. The covariance of the Gaussian process is a smoothing kernel and has parameters that control the degree of smoothness. The likelihood function for the smoothing parameters and their posterior density are computed from an approximation of the joint moments of the logistic normal process. The marginal predictive density mixes the conditional predictive density given the smoothing parameters with their posterior distribution. This hierarchical Bayes analysis provides a fully automated, data-dependent method for smoothing and selects the amount of smoothing that is coherent with its prior specification.
doi_str_mv 10.1093/biomet/78.3.531
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_biomet_78_3_531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2337022</jstor_id><sourcerecordid>2337022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-1018ca849199d6f3e06eb32f17cbae759de74da70beffc8fe8f53b8d74af367b3</originalsourceid><addsrcrecordid>eNpNj01Lw0AQhhdRsFbPXnPwmnY3sx_JRdBirVARpYL0skw2u7C1TcJuQPvvTYlULzMMPO_LPIRcMzphtIBp6Zud7aYqn8BEADshI8YlT0EwekpGlFKZAuf8nFzEuDmcUsgRuV01XxiqmGDSBjSdN1hubXKPexs91knd1C0G7JuDN0ll6-i7fWJj53fYNeGSnDncRnv1u8fkff6wmi3S5cvj0-xumRoA0aWMstxgzgtWFJV0YKm0JWSOKVOiVaKorOIVKlpa50zubO4ElHmlODqQqoQxmQ69JjQxBut0G_oPwl4zqg_6etDXKtege_0-cTMkWowGty5gbXw8xgRQISj8YZvY6_xvzYCqfoCiWdZj6YD52NnvI4bhU0sFSujFx1rP6ev67bnI9Bp-ABs_eCM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Towards a practicable Bayesian nonparametric density estimator</title><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><source>Oxford University Press Archive</source><creator>Lenk, Peter J.</creator><creatorcontrib>Lenk, Peter J.</creatorcontrib><description>SUMMARY Nonparametric density estimators smooth the empirical distribution function and are sensitive to the choice of smoothing parameters. This paper develops an hierarchical Bayes formulation for the smoothing problem. The prior distribution for the density function is the logistic normal process, which is a logistic transform of a Gaussian process. The covariance of the Gaussian process is a smoothing kernel and has parameters that control the degree of smoothness. The likelihood function for the smoothing parameters and their posterior density are computed from an approximation of the joint moments of the logistic normal process. The marginal predictive density mixes the conditional predictive density given the smoothing parameters with their posterior distribution. This hierarchical Bayes analysis provides a fully automated, data-dependent method for smoothing and selects the amount of smoothing that is coherent with its prior specification.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/78.3.531</identifier><identifier>CODEN: BIOKAX</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Approximation ; Covariance ; Data smoothing ; Density ; Density estimation ; Estimators ; Exact sciences and technology ; Hierarchical Bayes ; Histograms ; Logistic normal process ; Logistics ; Mathematical independent variables ; Mathematics ; Probability and statistics ; Sciences and techniques of general use ; Smoothing ; Statistical variance ; Statistics</subject><ispartof>Biometrika, 1991-09, Vol.78 (3), p.531-543</ispartof><rights>Copyright 1991 Biometrika Trust</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-1018ca849199d6f3e06eb32f17cbae759de74da70beffc8fe8f53b8d74af367b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2337022$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2337022$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,58213,58446</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5305503$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lenk, Peter J.</creatorcontrib><title>Towards a practicable Bayesian nonparametric density estimator</title><title>Biometrika</title><description>SUMMARY Nonparametric density estimators smooth the empirical distribution function and are sensitive to the choice of smoothing parameters. This paper develops an hierarchical Bayes formulation for the smoothing problem. The prior distribution for the density function is the logistic normal process, which is a logistic transform of a Gaussian process. The covariance of the Gaussian process is a smoothing kernel and has parameters that control the degree of smoothness. The likelihood function for the smoothing parameters and their posterior density are computed from an approximation of the joint moments of the logistic normal process. The marginal predictive density mixes the conditional predictive density given the smoothing parameters with their posterior distribution. This hierarchical Bayes analysis provides a fully automated, data-dependent method for smoothing and selects the amount of smoothing that is coherent with its prior specification.</description><subject>Approximation</subject><subject>Covariance</subject><subject>Data smoothing</subject><subject>Density</subject><subject>Density estimation</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Hierarchical Bayes</subject><subject>Histograms</subject><subject>Logistic normal process</subject><subject>Logistics</subject><subject>Mathematical independent variables</subject><subject>Mathematics</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Smoothing</subject><subject>Statistical variance</subject><subject>Statistics</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNpNj01Lw0AQhhdRsFbPXnPwmnY3sx_JRdBirVARpYL0skw2u7C1TcJuQPvvTYlULzMMPO_LPIRcMzphtIBp6Zud7aYqn8BEADshI8YlT0EwekpGlFKZAuf8nFzEuDmcUsgRuV01XxiqmGDSBjSdN1hubXKPexs91knd1C0G7JuDN0ll6-i7fWJj53fYNeGSnDncRnv1u8fkff6wmi3S5cvj0-xumRoA0aWMstxgzgtWFJV0YKm0JWSOKVOiVaKorOIVKlpa50zubO4ElHmlODqQqoQxmQ69JjQxBut0G_oPwl4zqg_6etDXKtege_0-cTMkWowGty5gbXw8xgRQISj8YZvY6_xvzYCqfoCiWdZj6YD52NnvI4bhU0sFSujFx1rP6ev67bnI9Bp-ABs_eCM</recordid><startdate>19910901</startdate><enddate>19910901</enddate><creator>Lenk, Peter J.</creator><general>Oxford University Press</general><general>Biometrika Trust</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19910901</creationdate><title>Towards a practicable Bayesian nonparametric density estimator</title><author>Lenk, Peter J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-1018ca849199d6f3e06eb32f17cbae759de74da70beffc8fe8f53b8d74af367b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Approximation</topic><topic>Covariance</topic><topic>Data smoothing</topic><topic>Density</topic><topic>Density estimation</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Hierarchical Bayes</topic><topic>Histograms</topic><topic>Logistic normal process</topic><topic>Logistics</topic><topic>Mathematical independent variables</topic><topic>Mathematics</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Smoothing</topic><topic>Statistical variance</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lenk, Peter J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lenk, Peter J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards a practicable Bayesian nonparametric density estimator</atitle><jtitle>Biometrika</jtitle><date>1991-09-01</date><risdate>1991</risdate><volume>78</volume><issue>3</issue><spage>531</spage><epage>543</epage><pages>531-543</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><coden>BIOKAX</coden><abstract>SUMMARY Nonparametric density estimators smooth the empirical distribution function and are sensitive to the choice of smoothing parameters. This paper develops an hierarchical Bayes formulation for the smoothing problem. The prior distribution for the density function is the logistic normal process, which is a logistic transform of a Gaussian process. The covariance of the Gaussian process is a smoothing kernel and has parameters that control the degree of smoothness. The likelihood function for the smoothing parameters and their posterior density are computed from an approximation of the joint moments of the logistic normal process. The marginal predictive density mixes the conditional predictive density given the smoothing parameters with their posterior distribution. This hierarchical Bayes analysis provides a fully automated, data-dependent method for smoothing and selects the amount of smoothing that is coherent with its prior specification.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/biomet/78.3.531</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3444
ispartof Biometrika, 1991-09, Vol.78 (3), p.531-543
issn 0006-3444
1464-3510
language eng
recordid cdi_crossref_primary_10_1093_biomet_78_3_531
source JSTOR Archival Journals and Primary Sources Collection【Remote access available】; Oxford University Press Archive
subjects Approximation
Covariance
Data smoothing
Density
Density estimation
Estimators
Exact sciences and technology
Hierarchical Bayes
Histograms
Logistic normal process
Logistics
Mathematical independent variables
Mathematics
Probability and statistics
Sciences and techniques of general use
Smoothing
Statistical variance
Statistics
title Towards a practicable Bayesian nonparametric density estimator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A47%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20a%20practicable%20Bayesian%20nonparametric%20density%20estimator&rft.jtitle=Biometrika&rft.au=Lenk,%20Peter%20J.&rft.date=1991-09-01&rft.volume=78&rft.issue=3&rft.spage=531&rft.epage=543&rft.pages=531-543&rft.issn=0006-3444&rft.eissn=1464-3510&rft.coden=BIOKAX&rft_id=info:doi/10.1093/biomet/78.3.531&rft_dat=%3Cjstor_cross%3E2337022%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-1018ca849199d6f3e06eb32f17cbae759de74da70beffc8fe8f53b8d74af367b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2337022&rfr_iscdi=true