Loading…

On the degrees of freedom of the smoothing parameter

The smoothing parameters in a semiparametric model are estimated based on criteria such as generalized cross-validation or restricted maximum likelihood. As these parameters are estimated in a data driven manner they influence the degrees of freedom of a semiparametric model, based on Stein’s lemma....

Full description

Saved in:
Bibliographic Details
Published in:Biometrika 2024-10
Main Authors: Säfken, B, Kneib, T, Wood, S N
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title Biometrika
container_volume
creator Säfken, B
Kneib, T
Wood, S N
description The smoothing parameters in a semiparametric model are estimated based on criteria such as generalized cross-validation or restricted maximum likelihood. As these parameters are estimated in a data driven manner they influence the degrees of freedom of a semiparametric model, based on Stein’s lemma. This allows us to associate parts of the degrees of freedom of a semiparametric model to the smoothing parameters. A framework is introduced that enables these degrees of freedom of the smoothing parameters to be derived analytically, based on the implicit function theorem. The degrees of freedom of the smoothing parameters are efficient to compute and have a geometrical interpretation. The practical importance of this finding is highlighted by a simulation study and an application, showing that ignoring the degrees of freedom of the smoothing parameters in AIC based model selection, leads to an increase in the post selection prediction error.
doi_str_mv 10.1093/biomet/asae052
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_biomet_asae052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_biomet_asae052</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1093_biomet_asae0523</originalsourceid><addsrcrecordid>eNqVjs0KwjAQhBdRsP5cPecFWhOTBjyL4s2L9xDtpq2YpmR78e1tsC_gaWYYhvkAdoIXgh_l_tEGj8PekkVeHmaQCaVVLkvB55BxznUulVJLWBG9UtSlzkDdOjY0yCqsIyKx4JgbTRV8sqkhH8LQtF3Nehvt-IBxAwtn34TbSddQXM730zV_xkAU0Zk-tt7GjxHcJDbzYzMTm_x78AW5wETz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the degrees of freedom of the smoothing parameter</title><source>Oxford Journals Online</source><creator>Säfken, B ; Kneib, T ; Wood, S N</creator><creatorcontrib>Säfken, B ; Kneib, T ; Wood, S N</creatorcontrib><description>The smoothing parameters in a semiparametric model are estimated based on criteria such as generalized cross-validation or restricted maximum likelihood. As these parameters are estimated in a data driven manner they influence the degrees of freedom of a semiparametric model, based on Stein’s lemma. This allows us to associate parts of the degrees of freedom of a semiparametric model to the smoothing parameters. A framework is introduced that enables these degrees of freedom of the smoothing parameters to be derived analytically, based on the implicit function theorem. The degrees of freedom of the smoothing parameters are efficient to compute and have a geometrical interpretation. The practical importance of this finding is highlighted by a simulation study and an application, showing that ignoring the degrees of freedom of the smoothing parameters in AIC based model selection, leads to an increase in the post selection prediction error.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/asae052</identifier><language>eng</language><ispartof>Biometrika, 2024-10</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Säfken, B</creatorcontrib><creatorcontrib>Kneib, T</creatorcontrib><creatorcontrib>Wood, S N</creatorcontrib><title>On the degrees of freedom of the smoothing parameter</title><title>Biometrika</title><description>The smoothing parameters in a semiparametric model are estimated based on criteria such as generalized cross-validation or restricted maximum likelihood. As these parameters are estimated in a data driven manner they influence the degrees of freedom of a semiparametric model, based on Stein’s lemma. This allows us to associate parts of the degrees of freedom of a semiparametric model to the smoothing parameters. A framework is introduced that enables these degrees of freedom of the smoothing parameters to be derived analytically, based on the implicit function theorem. The degrees of freedom of the smoothing parameters are efficient to compute and have a geometrical interpretation. The practical importance of this finding is highlighted by a simulation study and an application, showing that ignoring the degrees of freedom of the smoothing parameters in AIC based model selection, leads to an increase in the post selection prediction error.</description><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVjs0KwjAQhBdRsP5cPecFWhOTBjyL4s2L9xDtpq2YpmR78e1tsC_gaWYYhvkAdoIXgh_l_tEGj8PekkVeHmaQCaVVLkvB55BxznUulVJLWBG9UtSlzkDdOjY0yCqsIyKx4JgbTRV8sqkhH8LQtF3Nehvt-IBxAwtn34TbSddQXM730zV_xkAU0Zk-tt7GjxHcJDbzYzMTm_x78AW5wETz</recordid><startdate>20241010</startdate><enddate>20241010</enddate><creator>Säfken, B</creator><creator>Kneib, T</creator><creator>Wood, S N</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241010</creationdate><title>On the degrees of freedom of the smoothing parameter</title><author>Säfken, B ; Kneib, T ; Wood, S N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1093_biomet_asae0523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Säfken, B</creatorcontrib><creatorcontrib>Kneib, T</creatorcontrib><creatorcontrib>Wood, S N</creatorcontrib><collection>CrossRef</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Säfken, B</au><au>Kneib, T</au><au>Wood, S N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the degrees of freedom of the smoothing parameter</atitle><jtitle>Biometrika</jtitle><date>2024-10-10</date><risdate>2024</risdate><issn>0006-3444</issn><eissn>1464-3510</eissn><abstract>The smoothing parameters in a semiparametric model are estimated based on criteria such as generalized cross-validation or restricted maximum likelihood. As these parameters are estimated in a data driven manner they influence the degrees of freedom of a semiparametric model, based on Stein’s lemma. This allows us to associate parts of the degrees of freedom of a semiparametric model to the smoothing parameters. A framework is introduced that enables these degrees of freedom of the smoothing parameters to be derived analytically, based on the implicit function theorem. The degrees of freedom of the smoothing parameters are efficient to compute and have a geometrical interpretation. The practical importance of this finding is highlighted by a simulation study and an application, showing that ignoring the degrees of freedom of the smoothing parameters in AIC based model selection, leads to an increase in the post selection prediction error.</abstract><doi>10.1093/biomet/asae052</doi></addata></record>
fulltext fulltext
identifier ISSN: 0006-3444
ispartof Biometrika, 2024-10
issn 0006-3444
1464-3510
language eng
recordid cdi_crossref_primary_10_1093_biomet_asae052
source Oxford Journals Online
title On the degrees of freedom of the smoothing parameter
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A05%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20degrees%20of%20freedom%20of%20the%20smoothing%20parameter&rft.jtitle=Biometrika&rft.au=S%C3%A4fken,%20B&rft.date=2024-10-10&rft.issn=0006-3444&rft.eissn=1464-3510&rft_id=info:doi/10.1093/biomet/asae052&rft_dat=%3Ccrossref%3E10_1093_biomet_asae052%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-crossref_primary_10_1093_biomet_asae0523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true