Loading…

Distribution of likelihood-based p-values under a local alternative hypothesis

We consider inference on a scalar parameter of interest in the presence of a nuisance parameter, using a likelihood-based statistic which is asymptotically normally distributed under the null hypothesis. Higher-order expansions are used to compare the repeated sampling distribution, under a general...

Full description

Saved in:
Bibliographic Details
Published in:Biometrika 2016-09, Vol.103 (3), p.641-652
Main Authors: LEE, STEPHEN M. S., YOUNG, G. ALASTAIR
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c259t-841d4b0c601b9be7a6eb5f36414b1018621e594e737fa91ecdbacc6cde75f20e3
cites cdi_FETCH-LOGICAL-c259t-841d4b0c601b9be7a6eb5f36414b1018621e594e737fa91ecdbacc6cde75f20e3
container_end_page 652
container_issue 3
container_start_page 641
container_title Biometrika
container_volume 103
creator LEE, STEPHEN M. S.
YOUNG, G. ALASTAIR
description We consider inference on a scalar parameter of interest in the presence of a nuisance parameter, using a likelihood-based statistic which is asymptotically normally distributed under the null hypothesis. Higher-order expansions are used to compare the repeated sampling distribution, under a general contiguous alternative hypothesis, of p-values calculated from the asymptotic normal approximation to the null sampling distribution of the statistic with the distribution of p-values calculated by bootstrap approximations. The results of comparisons in terms of power of different testing procedures under an alternative hypothesis are closely related to differences under the null hypothesis, specifically the extent to which testing procedures are conservative or liberal under the null. Empirical examples are given which demonstrate that higher-order asymptotic effects may be seen clearly in small-sample contexts.
doi_str_mv 10.1093/biomet/asw021
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_biomet_asw021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26363461</jstor_id><sourcerecordid>26363461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-841d4b0c601b9be7a6eb5f36414b1018621e594e737fa91ecdbacc6cde75f20e3</originalsourceid><addsrcrecordid>eNo9kEFLwzAYhoMoWKdHj0L-QFy-Jk3Xo0ydwtCLnkuSfqWZWTOSbLJ_r6Pi6eWFh-fwEHIL_B54I-bGhS3muU7fvIQzUoBUkokK-DkpOOeKCSnlJblKaXO6qlIFeXt0KUdn9tmFkYaeeveF3g0hdMzohB3dsYP2e0x0P3YYqaY-WO2p9hnjqLM7IB2Ou5AHTC5dk4te-4Q3fzsjn89PH8sXtn5fvS4f1syWVZPZQkInDbeKg2kM1lqhqXqhJEgDHBaqBKwaibWoe90A2s5oa5XtsK76kqOYETZ5bQwpRezbXXRbHY8t8PYUo51itFOMX_5u4jcph_gPl0ooIRWIH1xvYEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Distribution of likelihood-based p-values under a local alternative hypothesis</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>LEE, STEPHEN M. S. ; YOUNG, G. ALASTAIR</creator><creatorcontrib>LEE, STEPHEN M. S. ; YOUNG, G. ALASTAIR</creatorcontrib><description>We consider inference on a scalar parameter of interest in the presence of a nuisance parameter, using a likelihood-based statistic which is asymptotically normally distributed under the null hypothesis. Higher-order expansions are used to compare the repeated sampling distribution, under a general contiguous alternative hypothesis, of p-values calculated from the asymptotic normal approximation to the null sampling distribution of the statistic with the distribution of p-values calculated by bootstrap approximations. The results of comparisons in terms of power of different testing procedures under an alternative hypothesis are closely related to differences under the null hypothesis, specifically the extent to which testing procedures are conservative or liberal under the null. Empirical examples are given which demonstrate that higher-order asymptotic effects may be seen clearly in small-sample contexts.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/asw021</identifier><language>eng</language><publisher>Biometrika Trust</publisher><ispartof>Biometrika, 2016-09, Vol.103 (3), p.641-652</ispartof><rights>2016 Biometrika Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-841d4b0c601b9be7a6eb5f36414b1018621e594e737fa91ecdbacc6cde75f20e3</citedby><cites>FETCH-LOGICAL-c259t-841d4b0c601b9be7a6eb5f36414b1018621e594e737fa91ecdbacc6cde75f20e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26363461$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26363461$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>LEE, STEPHEN M. S.</creatorcontrib><creatorcontrib>YOUNG, G. ALASTAIR</creatorcontrib><title>Distribution of likelihood-based p-values under a local alternative hypothesis</title><title>Biometrika</title><description>We consider inference on a scalar parameter of interest in the presence of a nuisance parameter, using a likelihood-based statistic which is asymptotically normally distributed under the null hypothesis. Higher-order expansions are used to compare the repeated sampling distribution, under a general contiguous alternative hypothesis, of p-values calculated from the asymptotic normal approximation to the null sampling distribution of the statistic with the distribution of p-values calculated by bootstrap approximations. The results of comparisons in terms of power of different testing procedures under an alternative hypothesis are closely related to differences under the null hypothesis, specifically the extent to which testing procedures are conservative or liberal under the null. Empirical examples are given which demonstrate that higher-order asymptotic effects may be seen clearly in small-sample contexts.</description><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLwzAYhoMoWKdHj0L-QFy-Jk3Xo0ydwtCLnkuSfqWZWTOSbLJ_r6Pi6eWFh-fwEHIL_B54I-bGhS3muU7fvIQzUoBUkokK-DkpOOeKCSnlJblKaXO6qlIFeXt0KUdn9tmFkYaeeveF3g0hdMzohB3dsYP2e0x0P3YYqaY-WO2p9hnjqLM7IB2Ou5AHTC5dk4te-4Q3fzsjn89PH8sXtn5fvS4f1syWVZPZQkInDbeKg2kM1lqhqXqhJEgDHBaqBKwaibWoe90A2s5oa5XtsK76kqOYETZ5bQwpRezbXXRbHY8t8PYUo51itFOMX_5u4jcph_gPl0ooIRWIH1xvYEg</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>LEE, STEPHEN M. S.</creator><creator>YOUNG, G. ALASTAIR</creator><general>Biometrika Trust</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160901</creationdate><title>Distribution of likelihood-based p-values under a local alternative hypothesis</title><author>LEE, STEPHEN M. S. ; YOUNG, G. ALASTAIR</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-841d4b0c601b9be7a6eb5f36414b1018621e594e737fa91ecdbacc6cde75f20e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LEE, STEPHEN M. S.</creatorcontrib><creatorcontrib>YOUNG, G. ALASTAIR</creatorcontrib><collection>CrossRef</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LEE, STEPHEN M. S.</au><au>YOUNG, G. ALASTAIR</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distribution of likelihood-based p-values under a local alternative hypothesis</atitle><jtitle>Biometrika</jtitle><date>2016-09-01</date><risdate>2016</risdate><volume>103</volume><issue>3</issue><spage>641</spage><epage>652</epage><pages>641-652</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><abstract>We consider inference on a scalar parameter of interest in the presence of a nuisance parameter, using a likelihood-based statistic which is asymptotically normally distributed under the null hypothesis. Higher-order expansions are used to compare the repeated sampling distribution, under a general contiguous alternative hypothesis, of p-values calculated from the asymptotic normal approximation to the null sampling distribution of the statistic with the distribution of p-values calculated by bootstrap approximations. The results of comparisons in terms of power of different testing procedures under an alternative hypothesis are closely related to differences under the null hypothesis, specifically the extent to which testing procedures are conservative or liberal under the null. Empirical examples are given which demonstrate that higher-order asymptotic effects may be seen clearly in small-sample contexts.</abstract><pub>Biometrika Trust</pub><doi>10.1093/biomet/asw021</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3444
ispartof Biometrika, 2016-09, Vol.103 (3), p.641-652
issn 0006-3444
1464-3510
language eng
recordid cdi_crossref_primary_10_1093_biomet_asw021
source JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online
title Distribution of likelihood-based p-values under a local alternative hypothesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A49%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distribution%20of%20likelihood-based%20p-values%20under%20a%20local%20alternative%20hypothesis&rft.jtitle=Biometrika&rft.au=LEE,%20STEPHEN%20M.%20S.&rft.date=2016-09-01&rft.volume=103&rft.issue=3&rft.spage=641&rft.epage=652&rft.pages=641-652&rft.issn=0006-3444&rft.eissn=1464-3510&rft_id=info:doi/10.1093/biomet/asw021&rft_dat=%3Cjstor_cross%3E26363461%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c259t-841d4b0c601b9be7a6eb5f36414b1018621e594e737fa91ecdbacc6cde75f20e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26363461&rfr_iscdi=true