Loading…
Distribution of likelihood-based p-values under a local alternative hypothesis
We consider inference on a scalar parameter of interest in the presence of a nuisance parameter, using a likelihood-based statistic which is asymptotically normally distributed under the null hypothesis. Higher-order expansions are used to compare the repeated sampling distribution, under a general...
Saved in:
Published in: | Biometrika 2016-09, Vol.103 (3), p.641-652 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c259t-841d4b0c601b9be7a6eb5f36414b1018621e594e737fa91ecdbacc6cde75f20e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c259t-841d4b0c601b9be7a6eb5f36414b1018621e594e737fa91ecdbacc6cde75f20e3 |
container_end_page | 652 |
container_issue | 3 |
container_start_page | 641 |
container_title | Biometrika |
container_volume | 103 |
creator | LEE, STEPHEN M. S. YOUNG, G. ALASTAIR |
description | We consider inference on a scalar parameter of interest in the presence of a nuisance parameter, using a likelihood-based statistic which is asymptotically normally distributed under the null hypothesis. Higher-order expansions are used to compare the repeated sampling distribution, under a general contiguous alternative hypothesis, of p-values calculated from the asymptotic normal approximation to the null sampling distribution of the statistic with the distribution of p-values calculated by bootstrap approximations. The results of comparisons in terms of power of different testing procedures under an alternative hypothesis are closely related to differences under the null hypothesis, specifically the extent to which testing procedures are conservative or liberal under the null. Empirical examples are given which demonstrate that higher-order asymptotic effects may be seen clearly in small-sample contexts. |
doi_str_mv | 10.1093/biomet/asw021 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_biomet_asw021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26363461</jstor_id><sourcerecordid>26363461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-841d4b0c601b9be7a6eb5f36414b1018621e594e737fa91ecdbacc6cde75f20e3</originalsourceid><addsrcrecordid>eNo9kEFLwzAYhoMoWKdHj0L-QFy-Jk3Xo0ydwtCLnkuSfqWZWTOSbLJ_r6Pi6eWFh-fwEHIL_B54I-bGhS3muU7fvIQzUoBUkokK-DkpOOeKCSnlJblKaXO6qlIFeXt0KUdn9tmFkYaeeveF3g0hdMzohB3dsYP2e0x0P3YYqaY-WO2p9hnjqLM7IB2Ou5AHTC5dk4te-4Q3fzsjn89PH8sXtn5fvS4f1syWVZPZQkInDbeKg2kM1lqhqXqhJEgDHBaqBKwaibWoe90A2s5oa5XtsK76kqOYETZ5bQwpRezbXXRbHY8t8PYUo51itFOMX_5u4jcph_gPl0ooIRWIH1xvYEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Distribution of likelihood-based p-values under a local alternative hypothesis</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>LEE, STEPHEN M. S. ; YOUNG, G. ALASTAIR</creator><creatorcontrib>LEE, STEPHEN M. S. ; YOUNG, G. ALASTAIR</creatorcontrib><description>We consider inference on a scalar parameter of interest in the presence of a nuisance parameter, using a likelihood-based statistic which is asymptotically normally distributed under the null hypothesis. Higher-order expansions are used to compare the repeated sampling distribution, under a general contiguous alternative hypothesis, of p-values calculated from the asymptotic normal approximation to the null sampling distribution of the statistic with the distribution of p-values calculated by bootstrap approximations. The results of comparisons in terms of power of different testing procedures under an alternative hypothesis are closely related to differences under the null hypothesis, specifically the extent to which testing procedures are conservative or liberal under the null. Empirical examples are given which demonstrate that higher-order asymptotic effects may be seen clearly in small-sample contexts.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/asw021</identifier><language>eng</language><publisher>Biometrika Trust</publisher><ispartof>Biometrika, 2016-09, Vol.103 (3), p.641-652</ispartof><rights>2016 Biometrika Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-841d4b0c601b9be7a6eb5f36414b1018621e594e737fa91ecdbacc6cde75f20e3</citedby><cites>FETCH-LOGICAL-c259t-841d4b0c601b9be7a6eb5f36414b1018621e594e737fa91ecdbacc6cde75f20e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26363461$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26363461$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>LEE, STEPHEN M. S.</creatorcontrib><creatorcontrib>YOUNG, G. ALASTAIR</creatorcontrib><title>Distribution of likelihood-based p-values under a local alternative hypothesis</title><title>Biometrika</title><description>We consider inference on a scalar parameter of interest in the presence of a nuisance parameter, using a likelihood-based statistic which is asymptotically normally distributed under the null hypothesis. Higher-order expansions are used to compare the repeated sampling distribution, under a general contiguous alternative hypothesis, of p-values calculated from the asymptotic normal approximation to the null sampling distribution of the statistic with the distribution of p-values calculated by bootstrap approximations. The results of comparisons in terms of power of different testing procedures under an alternative hypothesis are closely related to differences under the null hypothesis, specifically the extent to which testing procedures are conservative or liberal under the null. Empirical examples are given which demonstrate that higher-order asymptotic effects may be seen clearly in small-sample contexts.</description><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLwzAYhoMoWKdHj0L-QFy-Jk3Xo0ydwtCLnkuSfqWZWTOSbLJ_r6Pi6eWFh-fwEHIL_B54I-bGhS3muU7fvIQzUoBUkokK-DkpOOeKCSnlJblKaXO6qlIFeXt0KUdn9tmFkYaeeveF3g0hdMzohB3dsYP2e0x0P3YYqaY-WO2p9hnjqLM7IB2Ou5AHTC5dk4te-4Q3fzsjn89PH8sXtn5fvS4f1syWVZPZQkInDbeKg2kM1lqhqXqhJEgDHBaqBKwaibWoe90A2s5oa5XtsK76kqOYETZ5bQwpRezbXXRbHY8t8PYUo51itFOMX_5u4jcph_gPl0ooIRWIH1xvYEg</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>LEE, STEPHEN M. S.</creator><creator>YOUNG, G. ALASTAIR</creator><general>Biometrika Trust</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160901</creationdate><title>Distribution of likelihood-based p-values under a local alternative hypothesis</title><author>LEE, STEPHEN M. S. ; YOUNG, G. ALASTAIR</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-841d4b0c601b9be7a6eb5f36414b1018621e594e737fa91ecdbacc6cde75f20e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LEE, STEPHEN M. S.</creatorcontrib><creatorcontrib>YOUNG, G. ALASTAIR</creatorcontrib><collection>CrossRef</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LEE, STEPHEN M. S.</au><au>YOUNG, G. ALASTAIR</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distribution of likelihood-based p-values under a local alternative hypothesis</atitle><jtitle>Biometrika</jtitle><date>2016-09-01</date><risdate>2016</risdate><volume>103</volume><issue>3</issue><spage>641</spage><epage>652</epage><pages>641-652</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><abstract>We consider inference on a scalar parameter of interest in the presence of a nuisance parameter, using a likelihood-based statistic which is asymptotically normally distributed under the null hypothesis. Higher-order expansions are used to compare the repeated sampling distribution, under a general contiguous alternative hypothesis, of p-values calculated from the asymptotic normal approximation to the null sampling distribution of the statistic with the distribution of p-values calculated by bootstrap approximations. The results of comparisons in terms of power of different testing procedures under an alternative hypothesis are closely related to differences under the null hypothesis, specifically the extent to which testing procedures are conservative or liberal under the null. Empirical examples are given which demonstrate that higher-order asymptotic effects may be seen clearly in small-sample contexts.</abstract><pub>Biometrika Trust</pub><doi>10.1093/biomet/asw021</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3444 |
ispartof | Biometrika, 2016-09, Vol.103 (3), p.641-652 |
issn | 0006-3444 1464-3510 |
language | eng |
recordid | cdi_crossref_primary_10_1093_biomet_asw021 |
source | JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online |
title | Distribution of likelihood-based p-values under a local alternative hypothesis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A49%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distribution%20of%20likelihood-based%20p-values%20under%20a%20local%20alternative%20hypothesis&rft.jtitle=Biometrika&rft.au=LEE,%20STEPHEN%20M.%20S.&rft.date=2016-09-01&rft.volume=103&rft.issue=3&rft.spage=641&rft.epage=652&rft.pages=641-652&rft.issn=0006-3444&rft.eissn=1464-3510&rft_id=info:doi/10.1093/biomet/asw021&rft_dat=%3Cjstor_cross%3E26363461%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c259t-841d4b0c601b9be7a6eb5f36414b1018621e594e737fa91ecdbacc6cde75f20e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26363461&rfr_iscdi=true |