Loading…

Unified fuzzy logic controller and power management for an isolated residential hybrid PV/diesel/battery energy system

Abstract Hybrid systems based on renewable energies for the electrification of remote sites controlled by power management systems (PMSs) aim to reduce fossil fuels and increase the efficiency of renewable energy sources to minimize greenhouse gas emissions. The influential role of the PMS contribut...

Full description

Saved in:
Bibliographic Details
Published in:Clean energy (Online) 2022-08, Vol.6 (4), p.671-681
Main Authors: Atoui, Adil, Seghir Boucherit, Mohamed, Benmansour, Khelifa, Barkat, Said, Djerioui, Ali, Houari, Azeddine
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c404t-e7d84a6f351e175ac6a9a0db1a249600cc00695b167a8973ac0ce9b9dabb9f7f3
cites cdi_FETCH-LOGICAL-c404t-e7d84a6f351e175ac6a9a0db1a249600cc00695b167a8973ac0ce9b9dabb9f7f3
container_end_page 681
container_issue 4
container_start_page 671
container_title Clean energy (Online)
container_volume 6
creator Atoui, Adil
Seghir Boucherit, Mohamed
Benmansour, Khelifa
Barkat, Said
Djerioui, Ali
Houari, Azeddine
description Abstract Hybrid systems based on renewable energies for the electrification of remote sites controlled by power management systems (PMSs) aim to reduce fossil fuels and increase the efficiency of renewable energy sources to minimize greenhouse gas emissions. The influential role of the PMS contributes to improving the efficiency and effectiveness of these systems by ensuring a balance between the different sources and loads in all operating modes. However, the abrupt transitions between the various operational modes selected by the PMS generate power loss and imbalance. To handle this issue, a fuzzy logic controller (FLC)-based PMS controlling a photovoltaic (PV) and diesel hybrid system with a battery storage element connected to a DC bus is proposed in this paper. The proposed PMS is wholly based on FLC to ensure a smooth transition between the different modes of the system. The success of using the suggested PMS lies in how well the FLC parameters are chosen before the system is processed. For this purpose, the particle swarm optimization algorithm is adapted to tune the FLC parameters. The resulting optimal intelligent PMS is tested and compared with a classical one using comprehensive simulations performed in a Simscape ElectricalTM MATLAB® environment. The obtained results show an overshoot attenuation at the DC-bus voltage of 2% when changing the mode and an improvement in the PV generator efficiency by 99.5%. Graphical Abstract Graphical Abstract
doi_str_mv 10.1093/ce/zkac047
format article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_ce_zkac047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/ce/zkac047</oup_id><sourcerecordid>10.1093/ce/zkac047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-e7d84a6f351e175ac6a9a0db1a249600cc00695b167a8973ac0ce9b9dabb9f7f3</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouKx78RPk4kWoTdqm3Rxl8R8s6MEVb-UleVmDbbMkXaX99HbZPXuagfm9BzOEXHN2x5nMU43p-A2aFdUZmWWCiySX5ef5yRdZzi7JIkanmMiWQpQVn5GfTeesQ0PtfhwH2vit01T7rg--aTBQ6Azd-d_JtdDBFlvsemr9IaAu-gb66TZgdGYKHDT0a1DBGfr2kRqHEZtUQd9jGCh2GLYDjUPssb0iFxaaiIuTzsnm8eF99ZysX59eVvfrRBes6BOszLKA0uaCI68E6BIkMKM4ZIUsGdOasVIKxcsKlrLKp_IapZIGlJK2svmc3B7_6uBjDGjrXXAthKHmrD6MVmusT6NN8M0R9vvdf9wfy59wog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Unified fuzzy logic controller and power management for an isolated residential hybrid PV/diesel/battery energy system</title><source>OUP_牛津大学出版社OA刊</source><creator>Atoui, Adil ; Seghir Boucherit, Mohamed ; Benmansour, Khelifa ; Barkat, Said ; Djerioui, Ali ; Houari, Azeddine</creator><creatorcontrib>Atoui, Adil ; Seghir Boucherit, Mohamed ; Benmansour, Khelifa ; Barkat, Said ; Djerioui, Ali ; Houari, Azeddine</creatorcontrib><description>Abstract Hybrid systems based on renewable energies for the electrification of remote sites controlled by power management systems (PMSs) aim to reduce fossil fuels and increase the efficiency of renewable energy sources to minimize greenhouse gas emissions. The influential role of the PMS contributes to improving the efficiency and effectiveness of these systems by ensuring a balance between the different sources and loads in all operating modes. However, the abrupt transitions between the various operational modes selected by the PMS generate power loss and imbalance. To handle this issue, a fuzzy logic controller (FLC)-based PMS controlling a photovoltaic (PV) and diesel hybrid system with a battery storage element connected to a DC bus is proposed in this paper. The proposed PMS is wholly based on FLC to ensure a smooth transition between the different modes of the system. The success of using the suggested PMS lies in how well the FLC parameters are chosen before the system is processed. For this purpose, the particle swarm optimization algorithm is adapted to tune the FLC parameters. The resulting optimal intelligent PMS is tested and compared with a classical one using comprehensive simulations performed in a Simscape ElectricalTM MATLAB® environment. The obtained results show an overshoot attenuation at the DC-bus voltage of 2% when changing the mode and an improvement in the PV generator efficiency by 99.5%. Graphical Abstract Graphical Abstract</description><identifier>ISSN: 2515-4230</identifier><identifier>EISSN: 2515-396X</identifier><identifier>DOI: 10.1093/ce/zkac047</identifier><language>eng</language><publisher>UK: Oxford University Press</publisher><ispartof>Clean energy (Online), 2022-08, Vol.6 (4), p.671-681</ispartof><rights>The Author(s) 2022. Published by Oxford University Press on behalf of National Institute of Clean-and-Low-Carbon Energy 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-e7d84a6f351e175ac6a9a0db1a249600cc00695b167a8973ac0ce9b9dabb9f7f3</citedby><cites>FETCH-LOGICAL-c404t-e7d84a6f351e175ac6a9a0db1a249600cc00695b167a8973ac0ce9b9dabb9f7f3</cites><orcidid>0000-0002-3986-0038</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Atoui, Adil</creatorcontrib><creatorcontrib>Seghir Boucherit, Mohamed</creatorcontrib><creatorcontrib>Benmansour, Khelifa</creatorcontrib><creatorcontrib>Barkat, Said</creatorcontrib><creatorcontrib>Djerioui, Ali</creatorcontrib><creatorcontrib>Houari, Azeddine</creatorcontrib><title>Unified fuzzy logic controller and power management for an isolated residential hybrid PV/diesel/battery energy system</title><title>Clean energy (Online)</title><description>Abstract Hybrid systems based on renewable energies for the electrification of remote sites controlled by power management systems (PMSs) aim to reduce fossil fuels and increase the efficiency of renewable energy sources to minimize greenhouse gas emissions. The influential role of the PMS contributes to improving the efficiency and effectiveness of these systems by ensuring a balance between the different sources and loads in all operating modes. However, the abrupt transitions between the various operational modes selected by the PMS generate power loss and imbalance. To handle this issue, a fuzzy logic controller (FLC)-based PMS controlling a photovoltaic (PV) and diesel hybrid system with a battery storage element connected to a DC bus is proposed in this paper. The proposed PMS is wholly based on FLC to ensure a smooth transition between the different modes of the system. The success of using the suggested PMS lies in how well the FLC parameters are chosen before the system is processed. For this purpose, the particle swarm optimization algorithm is adapted to tune the FLC parameters. The resulting optimal intelligent PMS is tested and compared with a classical one using comprehensive simulations performed in a Simscape ElectricalTM MATLAB® environment. The obtained results show an overshoot attenuation at the DC-bus voltage of 2% when changing the mode and an improvement in the PV generator efficiency by 99.5%. Graphical Abstract Graphical Abstract</description><issn>2515-4230</issn><issn>2515-396X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNp9kE9LxDAUxIMouKx78RPk4kWoTdqm3Rxl8R8s6MEVb-UleVmDbbMkXaX99HbZPXuagfm9BzOEXHN2x5nMU43p-A2aFdUZmWWCiySX5ef5yRdZzi7JIkanmMiWQpQVn5GfTeesQ0PtfhwH2vit01T7rg--aTBQ6Azd-d_JtdDBFlvsemr9IaAu-gb66TZgdGYKHDT0a1DBGfr2kRqHEZtUQd9jGCh2GLYDjUPssb0iFxaaiIuTzsnm8eF99ZysX59eVvfrRBes6BOszLKA0uaCI68E6BIkMKM4ZIUsGdOasVIKxcsKlrLKp_IapZIGlJK2svmc3B7_6uBjDGjrXXAthKHmrD6MVmusT6NN8M0R9vvdf9wfy59wog</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Atoui, Adil</creator><creator>Seghir Boucherit, Mohamed</creator><creator>Benmansour, Khelifa</creator><creator>Barkat, Said</creator><creator>Djerioui, Ali</creator><creator>Houari, Azeddine</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3986-0038</orcidid></search><sort><creationdate>20220801</creationdate><title>Unified fuzzy logic controller and power management for an isolated residential hybrid PV/diesel/battery energy system</title><author>Atoui, Adil ; Seghir Boucherit, Mohamed ; Benmansour, Khelifa ; Barkat, Said ; Djerioui, Ali ; Houari, Azeddine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-e7d84a6f351e175ac6a9a0db1a249600cc00695b167a8973ac0ce9b9dabb9f7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atoui, Adil</creatorcontrib><creatorcontrib>Seghir Boucherit, Mohamed</creatorcontrib><creatorcontrib>Benmansour, Khelifa</creatorcontrib><creatorcontrib>Barkat, Said</creatorcontrib><creatorcontrib>Djerioui, Ali</creatorcontrib><creatorcontrib>Houari, Azeddine</creatorcontrib><collection>OUP_牛津大学出版社OA刊</collection><collection>CrossRef</collection><jtitle>Clean energy (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atoui, Adil</au><au>Seghir Boucherit, Mohamed</au><au>Benmansour, Khelifa</au><au>Barkat, Said</au><au>Djerioui, Ali</au><au>Houari, Azeddine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unified fuzzy logic controller and power management for an isolated residential hybrid PV/diesel/battery energy system</atitle><jtitle>Clean energy (Online)</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>6</volume><issue>4</issue><spage>671</spage><epage>681</epage><pages>671-681</pages><issn>2515-4230</issn><eissn>2515-396X</eissn><abstract>Abstract Hybrid systems based on renewable energies for the electrification of remote sites controlled by power management systems (PMSs) aim to reduce fossil fuels and increase the efficiency of renewable energy sources to minimize greenhouse gas emissions. The influential role of the PMS contributes to improving the efficiency and effectiveness of these systems by ensuring a balance between the different sources and loads in all operating modes. However, the abrupt transitions between the various operational modes selected by the PMS generate power loss and imbalance. To handle this issue, a fuzzy logic controller (FLC)-based PMS controlling a photovoltaic (PV) and diesel hybrid system with a battery storage element connected to a DC bus is proposed in this paper. The proposed PMS is wholly based on FLC to ensure a smooth transition between the different modes of the system. The success of using the suggested PMS lies in how well the FLC parameters are chosen before the system is processed. For this purpose, the particle swarm optimization algorithm is adapted to tune the FLC parameters. The resulting optimal intelligent PMS is tested and compared with a classical one using comprehensive simulations performed in a Simscape ElectricalTM MATLAB® environment. The obtained results show an overshoot attenuation at the DC-bus voltage of 2% when changing the mode and an improvement in the PV generator efficiency by 99.5%. Graphical Abstract Graphical Abstract</abstract><cop>UK</cop><pub>Oxford University Press</pub><doi>10.1093/ce/zkac047</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3986-0038</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2515-4230
ispartof Clean energy (Online), 2022-08, Vol.6 (4), p.671-681
issn 2515-4230
2515-396X
language eng
recordid cdi_crossref_primary_10_1093_ce_zkac047
source OUP_牛津大学出版社OA刊
title Unified fuzzy logic controller and power management for an isolated residential hybrid PV/diesel/battery energy system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A03%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unified%20fuzzy%20logic%20controller%20and%20power%20management%20for%20an%20isolated%20residential%20hybrid%20PV/diesel/battery%20energy%20system&rft.jtitle=Clean%20energy%20(Online)&rft.au=Atoui,%20Adil&rft.date=2022-08-01&rft.volume=6&rft.issue=4&rft.spage=671&rft.epage=681&rft.pages=671-681&rft.issn=2515-4230&rft.eissn=2515-396X&rft_id=info:doi/10.1093/ce/zkac047&rft_dat=%3Coup_cross%3E10.1093/ce/zkac047%3C/oup_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-e7d84a6f351e175ac6a9a0db1a249600cc00695b167a8973ac0ce9b9dabb9f7f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/ce/zkac047&rfr_iscdi=true