Loading…
Linearly Homomorphic Signatures from Lattices
Abstract Linearly homomorphic signatures (LHSs) allow any entity to linearly combine a set of signatures and to provide authentication service for the corresponding (combined) data. The public key of the current known LHSs from lattices in the standard model requires $O(l)$ matrices and $O(k)$ vecto...
Saved in:
Published in: | Computer journal 2020-12, Vol.63 (12), p.1871-1885 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c273t-a10ee4ba3753f51e0a7724283bd44784248114264a7088c3d8164691ce4f34ea3 |
---|---|
cites | cdi_FETCH-LOGICAL-c273t-a10ee4ba3753f51e0a7724283bd44784248114264a7088c3d8164691ce4f34ea3 |
container_end_page | 1885 |
container_issue | 12 |
container_start_page | 1871 |
container_title | Computer journal |
container_volume | 63 |
creator | Lin, Cheng-Jun Xue, Rui Yang, Shao-Jun Huang, Xinyi Li, Shimin |
description | Abstract
Linearly homomorphic signatures (LHSs) allow any entity to linearly combine a set of signatures and to provide authentication service for the corresponding (combined) data. The public key of the current known LHSs from lattices in the standard model requires $O(l)$ matrices and $O(k)$ vectors, where $l$ is the length of file identifier and $k$ is the maximum data set size that linear functions support. In this paper, we construct two lattice-based LHS schemes with provable security in the standard model and both schemes can authenticate vectors defined over finite field. First, we present a basic LHS scheme satisfying selective security, based on the full-rank difference hash functions. Second, we modify the chameleon hash function constructed by (Cash, D., Hofheinz, D., Kiltz, E. and Peikert, C. (2010) Bonsai Trees, or How to Delegate a Lattice Basis. In Proc. EUROCRYPT 10, Monaco/French Riviera, May 30 to June 3, pp. 523–552. Springer, Berlin) to construct a linearly homomorphic chameleon hash function (LHCHF), which can be applied to all transformations from selectively secure LHS scheme that authenticates vectors defined over finite field $\mathbb{F}_{p}$ ($p=poly(n)$) to fully secure one, except for a new one that authenticates vectors defined over a small field. Starting from LHCFH and the basic scheme as above, we obtain a fully secure LHS scheme. Both schemes can be used to sign multiple files and have relatively short public keys consisting of $O(1)$ matrices and $O(k)$ vectors. |
doi_str_mv | 10.1093/comjnl/bxaa034 |
format | article |
fullrecord | <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_comjnl_bxaa034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/comjnl/bxaa034</oup_id><sourcerecordid>10.1093/comjnl/bxaa034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-a10ee4ba3753f51e0a7724283bd44784248114264a7088c3d8164691ce4f34ea3</originalsourceid><addsrcrecordid>eNqFjz1PwzAURS0EEqGwMmdlcPtsv9rOiCqgSJEYgDl6cW1IlS_ZqUT_PUXpju5wl3uudBi7F7AUUKiVG7p9367qHyJQeMEygRq4BG0uWQYggKOWcM1uUtoDgIRCZ4yXTe8ptsd8O3SnxPG7cfl789XTdIg-5SEOXV7SNDXOp1t2FahN_u7cC_b5_PSx2fLy7eV181hyJ42aOAnwHmtSZq3CWnggYyRKq-odorEo0QqBUiMZsNapnRUadSGcx6DQk1qw5fzr4pBS9KEaY9NRPFYCqj_ZapatzrIn4GEGhsP43_YXpr5XOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Linearly Homomorphic Signatures from Lattices</title><source>Oxford Journals Online</source><creator>Lin, Cheng-Jun ; Xue, Rui ; Yang, Shao-Jun ; Huang, Xinyi ; Li, Shimin</creator><creatorcontrib>Lin, Cheng-Jun ; Xue, Rui ; Yang, Shao-Jun ; Huang, Xinyi ; Li, Shimin</creatorcontrib><description>Abstract
Linearly homomorphic signatures (LHSs) allow any entity to linearly combine a set of signatures and to provide authentication service for the corresponding (combined) data. The public key of the current known LHSs from lattices in the standard model requires $O(l)$ matrices and $O(k)$ vectors, where $l$ is the length of file identifier and $k$ is the maximum data set size that linear functions support. In this paper, we construct two lattice-based LHS schemes with provable security in the standard model and both schemes can authenticate vectors defined over finite field. First, we present a basic LHS scheme satisfying selective security, based on the full-rank difference hash functions. Second, we modify the chameleon hash function constructed by (Cash, D., Hofheinz, D., Kiltz, E. and Peikert, C. (2010) Bonsai Trees, or How to Delegate a Lattice Basis. In Proc. EUROCRYPT 10, Monaco/French Riviera, May 30 to June 3, pp. 523–552. Springer, Berlin) to construct a linearly homomorphic chameleon hash function (LHCHF), which can be applied to all transformations from selectively secure LHS scheme that authenticates vectors defined over finite field $\mathbb{F}_{p}$ ($p=poly(n)$) to fully secure one, except for a new one that authenticates vectors defined over a small field. Starting from LHCFH and the basic scheme as above, we obtain a fully secure LHS scheme. Both schemes can be used to sign multiple files and have relatively short public keys consisting of $O(1)$ matrices and $O(k)$ vectors.</description><identifier>ISSN: 0010-4620</identifier><identifier>EISSN: 1460-2067</identifier><identifier>DOI: 10.1093/comjnl/bxaa034</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Computer journal, 2020-12, Vol.63 (12), p.1871-1885</ispartof><rights>The British Computer Society 2020. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-a10ee4ba3753f51e0a7724283bd44784248114264a7088c3d8164691ce4f34ea3</citedby><cites>FETCH-LOGICAL-c273t-a10ee4ba3753f51e0a7724283bd44784248114264a7088c3d8164691ce4f34ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lin, Cheng-Jun</creatorcontrib><creatorcontrib>Xue, Rui</creatorcontrib><creatorcontrib>Yang, Shao-Jun</creatorcontrib><creatorcontrib>Huang, Xinyi</creatorcontrib><creatorcontrib>Li, Shimin</creatorcontrib><title>Linearly Homomorphic Signatures from Lattices</title><title>Computer journal</title><description>Abstract
Linearly homomorphic signatures (LHSs) allow any entity to linearly combine a set of signatures and to provide authentication service for the corresponding (combined) data. The public key of the current known LHSs from lattices in the standard model requires $O(l)$ matrices and $O(k)$ vectors, where $l$ is the length of file identifier and $k$ is the maximum data set size that linear functions support. In this paper, we construct two lattice-based LHS schemes with provable security in the standard model and both schemes can authenticate vectors defined over finite field. First, we present a basic LHS scheme satisfying selective security, based on the full-rank difference hash functions. Second, we modify the chameleon hash function constructed by (Cash, D., Hofheinz, D., Kiltz, E. and Peikert, C. (2010) Bonsai Trees, or How to Delegate a Lattice Basis. In Proc. EUROCRYPT 10, Monaco/French Riviera, May 30 to June 3, pp. 523–552. Springer, Berlin) to construct a linearly homomorphic chameleon hash function (LHCHF), which can be applied to all transformations from selectively secure LHS scheme that authenticates vectors defined over finite field $\mathbb{F}_{p}$ ($p=poly(n)$) to fully secure one, except for a new one that authenticates vectors defined over a small field. Starting from LHCFH and the basic scheme as above, we obtain a fully secure LHS scheme. Both schemes can be used to sign multiple files and have relatively short public keys consisting of $O(1)$ matrices and $O(k)$ vectors.</description><issn>0010-4620</issn><issn>1460-2067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFjz1PwzAURS0EEqGwMmdlcPtsv9rOiCqgSJEYgDl6cW1IlS_ZqUT_PUXpju5wl3uudBi7F7AUUKiVG7p9367qHyJQeMEygRq4BG0uWQYggKOWcM1uUtoDgIRCZ4yXTe8ptsd8O3SnxPG7cfl789XTdIg-5SEOXV7SNDXOp1t2FahN_u7cC_b5_PSx2fLy7eV181hyJ42aOAnwHmtSZq3CWnggYyRKq-odorEo0QqBUiMZsNapnRUadSGcx6DQk1qw5fzr4pBS9KEaY9NRPFYCqj_ZapatzrIn4GEGhsP43_YXpr5XOg</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Lin, Cheng-Jun</creator><creator>Xue, Rui</creator><creator>Yang, Shao-Jun</creator><creator>Huang, Xinyi</creator><creator>Li, Shimin</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201201</creationdate><title>Linearly Homomorphic Signatures from Lattices</title><author>Lin, Cheng-Jun ; Xue, Rui ; Yang, Shao-Jun ; Huang, Xinyi ; Li, Shimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-a10ee4ba3753f51e0a7724283bd44784248114264a7088c3d8164691ce4f34ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Cheng-Jun</creatorcontrib><creatorcontrib>Xue, Rui</creatorcontrib><creatorcontrib>Yang, Shao-Jun</creatorcontrib><creatorcontrib>Huang, Xinyi</creatorcontrib><creatorcontrib>Li, Shimin</creatorcontrib><collection>CrossRef</collection><jtitle>Computer journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Cheng-Jun</au><au>Xue, Rui</au><au>Yang, Shao-Jun</au><au>Huang, Xinyi</au><au>Li, Shimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linearly Homomorphic Signatures from Lattices</atitle><jtitle>Computer journal</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>63</volume><issue>12</issue><spage>1871</spage><epage>1885</epage><pages>1871-1885</pages><issn>0010-4620</issn><eissn>1460-2067</eissn><abstract>Abstract
Linearly homomorphic signatures (LHSs) allow any entity to linearly combine a set of signatures and to provide authentication service for the corresponding (combined) data. The public key of the current known LHSs from lattices in the standard model requires $O(l)$ matrices and $O(k)$ vectors, where $l$ is the length of file identifier and $k$ is the maximum data set size that linear functions support. In this paper, we construct two lattice-based LHS schemes with provable security in the standard model and both schemes can authenticate vectors defined over finite field. First, we present a basic LHS scheme satisfying selective security, based on the full-rank difference hash functions. Second, we modify the chameleon hash function constructed by (Cash, D., Hofheinz, D., Kiltz, E. and Peikert, C. (2010) Bonsai Trees, or How to Delegate a Lattice Basis. In Proc. EUROCRYPT 10, Monaco/French Riviera, May 30 to June 3, pp. 523–552. Springer, Berlin) to construct a linearly homomorphic chameleon hash function (LHCHF), which can be applied to all transformations from selectively secure LHS scheme that authenticates vectors defined over finite field $\mathbb{F}_{p}$ ($p=poly(n)$) to fully secure one, except for a new one that authenticates vectors defined over a small field. Starting from LHCFH and the basic scheme as above, we obtain a fully secure LHS scheme. Both schemes can be used to sign multiple files and have relatively short public keys consisting of $O(1)$ matrices and $O(k)$ vectors.</abstract><pub>Oxford University Press</pub><doi>10.1093/comjnl/bxaa034</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4620 |
ispartof | Computer journal, 2020-12, Vol.63 (12), p.1871-1885 |
issn | 0010-4620 1460-2067 |
language | eng |
recordid | cdi_crossref_primary_10_1093_comjnl_bxaa034 |
source | Oxford Journals Online |
title | Linearly Homomorphic Signatures from Lattices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A39%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linearly%20Homomorphic%20Signatures%20from%20Lattices&rft.jtitle=Computer%20journal&rft.au=Lin,%20Cheng-Jun&rft.date=2020-12-01&rft.volume=63&rft.issue=12&rft.spage=1871&rft.epage=1885&rft.pages=1871-1885&rft.issn=0010-4620&rft.eissn=1460-2067&rft_id=info:doi/10.1093/comjnl/bxaa034&rft_dat=%3Coup_cross%3E10.1093/comjnl/bxaa034%3C/oup_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c273t-a10ee4ba3753f51e0a7724283bd44784248114264a7088c3d8164691ce4f34ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/comjnl/bxaa034&rfr_iscdi=true |