Loading…
An Efficient Algorithm to Extract Control Flow-Based Features for IoT Malware Detection
Abstract Control flow-based feature extraction method has the ability to detect malicious code with higher accuracy than traditional text-based methods. Unfortunately, this method has been encountered with the NP-hard problem, which is infeasible for the large-sized and high-complexity programs. To...
Saved in:
Published in: | Computer journal 2021-04, Vol.64 (4), p.599-609 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c273t-c8a3d48037dfd0f030ebfaa71b613b0a6b8a1afcf0b9193e66d6dc5c5a3dde133 |
---|---|
cites | cdi_FETCH-LOGICAL-c273t-c8a3d48037dfd0f030ebfaa71b613b0a6b8a1afcf0b9193e66d6dc5c5a3dde133 |
container_end_page | 609 |
container_issue | 4 |
container_start_page | 599 |
container_title | Computer journal |
container_volume | 64 |
creator | Nghi Phu, Tran Dai Tho, Nguyen Huy Hoang, Le Ngoc Toan, Nguyen Ngoc Binh, Nguyen |
description | Abstract
Control flow-based feature extraction method has the ability to detect malicious code with higher accuracy than traditional text-based methods. Unfortunately, this method has been encountered with the NP-hard problem, which is infeasible for the large-sized and high-complexity programs. To tackle this, we propose a control flow-based feature extraction dynamic programming algorithm for fast extraction of control flow-based features with polynomial time O($N^{2}$), where N is the number of basic blocks in decompiled executable codes. From the experimental results, it is demonstrated that the proposed algorithm is more efficient and effective in detecting malware than the existing ones. Applying our algorithm to an Internet of Things dataset gives better results on three measures: Accuracy = 99.05%, False Positive Rate = 1.31% and False Negative Rate = 0.66%. |
doi_str_mv | 10.1093/comjnl/bxaa087 |
format | article |
fullrecord | <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_comjnl_bxaa087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/comjnl/bxaa087</oup_id><sourcerecordid>10.1093/comjnl/bxaa087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-c8a3d48037dfd0f030ebfaa71b613b0a6b8a1afcf0b9193e66d6dc5c5a3dde133</originalsourceid><addsrcrecordid>eNqFkD1PwzAURS0EEqGwMntlSPscp04yhpJApSKWIsboxR-QKokr21XLv29RuzPd5Z4zHEIeGUwZFHwm7bAZ-1l7QIQ8uyIRSwXECYjsmkQADOJUJHBL7rzfAEAChYjIVznSyphOdnoMtOy_revCz0CDpdUhOJSBLuwYnO1p3dt9_IxeK1prDDunPTXW0aVd03fs9-g0fdFBy9DZ8Z7cGOy9frjshHzW1XrxFq8-XpeLchXLJOMhljlylebAM2UUGOCgW4OYsVYw3gKKNkeGRhpoC1ZwLYQSSs7l_IQpzTifkOnZK5313mnTbF03oPttGDR_WZpzluaS5QQ8nQG72_73PQLi92f8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Efficient Algorithm to Extract Control Flow-Based Features for IoT Malware Detection</title><source>Oxford Journals Online</source><creator>Nghi Phu, Tran ; Dai Tho, Nguyen ; Huy Hoang, Le ; Ngoc Toan, Nguyen ; Ngoc Binh, Nguyen</creator><creatorcontrib>Nghi Phu, Tran ; Dai Tho, Nguyen ; Huy Hoang, Le ; Ngoc Toan, Nguyen ; Ngoc Binh, Nguyen</creatorcontrib><description>Abstract
Control flow-based feature extraction method has the ability to detect malicious code with higher accuracy than traditional text-based methods. Unfortunately, this method has been encountered with the NP-hard problem, which is infeasible for the large-sized and high-complexity programs. To tackle this, we propose a control flow-based feature extraction dynamic programming algorithm for fast extraction of control flow-based features with polynomial time O($N^{2}$), where N is the number of basic blocks in decompiled executable codes. From the experimental results, it is demonstrated that the proposed algorithm is more efficient and effective in detecting malware than the existing ones. Applying our algorithm to an Internet of Things dataset gives better results on three measures: Accuracy = 99.05%, False Positive Rate = 1.31% and False Negative Rate = 0.66%.</description><identifier>ISSN: 0010-4620</identifier><identifier>EISSN: 1460-2067</identifier><identifier>DOI: 10.1093/comjnl/bxaa087</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Computer journal, 2021-04, Vol.64 (4), p.599-609</ispartof><rights>The British Computer Society 2020. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-c8a3d48037dfd0f030ebfaa71b613b0a6b8a1afcf0b9193e66d6dc5c5a3dde133</citedby><cites>FETCH-LOGICAL-c273t-c8a3d48037dfd0f030ebfaa71b613b0a6b8a1afcf0b9193e66d6dc5c5a3dde133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Nghi Phu, Tran</creatorcontrib><creatorcontrib>Dai Tho, Nguyen</creatorcontrib><creatorcontrib>Huy Hoang, Le</creatorcontrib><creatorcontrib>Ngoc Toan, Nguyen</creatorcontrib><creatorcontrib>Ngoc Binh, Nguyen</creatorcontrib><title>An Efficient Algorithm to Extract Control Flow-Based Features for IoT Malware Detection</title><title>Computer journal</title><description>Abstract
Control flow-based feature extraction method has the ability to detect malicious code with higher accuracy than traditional text-based methods. Unfortunately, this method has been encountered with the NP-hard problem, which is infeasible for the large-sized and high-complexity programs. To tackle this, we propose a control flow-based feature extraction dynamic programming algorithm for fast extraction of control flow-based features with polynomial time O($N^{2}$), where N is the number of basic blocks in decompiled executable codes. From the experimental results, it is demonstrated that the proposed algorithm is more efficient and effective in detecting malware than the existing ones. Applying our algorithm to an Internet of Things dataset gives better results on three measures: Accuracy = 99.05%, False Positive Rate = 1.31% and False Negative Rate = 0.66%.</description><issn>0010-4620</issn><issn>1460-2067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAURS0EEqGwMntlSPscp04yhpJApSKWIsboxR-QKokr21XLv29RuzPd5Z4zHEIeGUwZFHwm7bAZ-1l7QIQ8uyIRSwXECYjsmkQADOJUJHBL7rzfAEAChYjIVznSyphOdnoMtOy_revCz0CDpdUhOJSBLuwYnO1p3dt9_IxeK1prDDunPTXW0aVd03fs9-g0fdFBy9DZ8Z7cGOy9frjshHzW1XrxFq8-XpeLchXLJOMhljlylebAM2UUGOCgW4OYsVYw3gKKNkeGRhpoC1ZwLYQSSs7l_IQpzTifkOnZK5313mnTbF03oPttGDR_WZpzluaS5QQ8nQG72_73PQLi92f8</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Nghi Phu, Tran</creator><creator>Dai Tho, Nguyen</creator><creator>Huy Hoang, Le</creator><creator>Ngoc Toan, Nguyen</creator><creator>Ngoc Binh, Nguyen</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210401</creationdate><title>An Efficient Algorithm to Extract Control Flow-Based Features for IoT Malware Detection</title><author>Nghi Phu, Tran ; Dai Tho, Nguyen ; Huy Hoang, Le ; Ngoc Toan, Nguyen ; Ngoc Binh, Nguyen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-c8a3d48037dfd0f030ebfaa71b613b0a6b8a1afcf0b9193e66d6dc5c5a3dde133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nghi Phu, Tran</creatorcontrib><creatorcontrib>Dai Tho, Nguyen</creatorcontrib><creatorcontrib>Huy Hoang, Le</creatorcontrib><creatorcontrib>Ngoc Toan, Nguyen</creatorcontrib><creatorcontrib>Ngoc Binh, Nguyen</creatorcontrib><collection>CrossRef</collection><jtitle>Computer journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nghi Phu, Tran</au><au>Dai Tho, Nguyen</au><au>Huy Hoang, Le</au><au>Ngoc Toan, Nguyen</au><au>Ngoc Binh, Nguyen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Algorithm to Extract Control Flow-Based Features for IoT Malware Detection</atitle><jtitle>Computer journal</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>64</volume><issue>4</issue><spage>599</spage><epage>609</epage><pages>599-609</pages><issn>0010-4620</issn><eissn>1460-2067</eissn><abstract>Abstract
Control flow-based feature extraction method has the ability to detect malicious code with higher accuracy than traditional text-based methods. Unfortunately, this method has been encountered with the NP-hard problem, which is infeasible for the large-sized and high-complexity programs. To tackle this, we propose a control flow-based feature extraction dynamic programming algorithm for fast extraction of control flow-based features with polynomial time O($N^{2}$), where N is the number of basic blocks in decompiled executable codes. From the experimental results, it is demonstrated that the proposed algorithm is more efficient and effective in detecting malware than the existing ones. Applying our algorithm to an Internet of Things dataset gives better results on three measures: Accuracy = 99.05%, False Positive Rate = 1.31% and False Negative Rate = 0.66%.</abstract><pub>Oxford University Press</pub><doi>10.1093/comjnl/bxaa087</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4620 |
ispartof | Computer journal, 2021-04, Vol.64 (4), p.599-609 |
issn | 0010-4620 1460-2067 |
language | eng |
recordid | cdi_crossref_primary_10_1093_comjnl_bxaa087 |
source | Oxford Journals Online |
title | An Efficient Algorithm to Extract Control Flow-Based Features for IoT Malware Detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A41%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Algorithm%20to%20Extract%20Control%20Flow-Based%20Features%20for%20IoT%20Malware%20Detection&rft.jtitle=Computer%20journal&rft.au=Nghi%20Phu,%20Tran&rft.date=2021-04-01&rft.volume=64&rft.issue=4&rft.spage=599&rft.epage=609&rft.pages=599-609&rft.issn=0010-4620&rft.eissn=1460-2067&rft_id=info:doi/10.1093/comjnl/bxaa087&rft_dat=%3Coup_cross%3E10.1093/comjnl/bxaa087%3C/oup_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c273t-c8a3d48037dfd0f030ebfaa71b613b0a6b8a1afcf0b9193e66d6dc5c5a3dde133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/comjnl/bxaa087&rfr_iscdi=true |