Loading…

An Efficient Algorithm to Extract Control Flow-Based Features for IoT Malware Detection

Abstract Control flow-based feature extraction method has the ability to detect malicious code with higher accuracy than traditional text-based methods. Unfortunately, this method has been encountered with the NP-hard problem, which is infeasible for the large-sized and high-complexity programs. To...

Full description

Saved in:
Bibliographic Details
Published in:Computer journal 2021-04, Vol.64 (4), p.599-609
Main Authors: Nghi Phu, Tran, Dai Tho, Nguyen, Huy Hoang, Le, Ngoc Toan, Nguyen, Ngoc Binh, Nguyen
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c273t-c8a3d48037dfd0f030ebfaa71b613b0a6b8a1afcf0b9193e66d6dc5c5a3dde133
cites cdi_FETCH-LOGICAL-c273t-c8a3d48037dfd0f030ebfaa71b613b0a6b8a1afcf0b9193e66d6dc5c5a3dde133
container_end_page 609
container_issue 4
container_start_page 599
container_title Computer journal
container_volume 64
creator Nghi Phu, Tran
Dai Tho, Nguyen
Huy Hoang, Le
Ngoc Toan, Nguyen
Ngoc Binh, Nguyen
description Abstract Control flow-based feature extraction method has the ability to detect malicious code with higher accuracy than traditional text-based methods. Unfortunately, this method has been encountered with the NP-hard problem, which is infeasible for the large-sized and high-complexity programs. To tackle this, we propose a control flow-based feature extraction dynamic programming algorithm for fast extraction of control flow-based features with polynomial time O($N^{2}$), where N is the number of basic blocks in decompiled executable codes. From the experimental results, it is demonstrated that the proposed algorithm is more efficient and effective in detecting malware than the existing ones. Applying our algorithm to an Internet of Things dataset gives better results on three measures: Accuracy = 99.05%, False Positive Rate = 1.31% and False Negative Rate = 0.66%.
doi_str_mv 10.1093/comjnl/bxaa087
format article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_comjnl_bxaa087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/comjnl/bxaa087</oup_id><sourcerecordid>10.1093/comjnl/bxaa087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-c8a3d48037dfd0f030ebfaa71b613b0a6b8a1afcf0b9193e66d6dc5c5a3dde133</originalsourceid><addsrcrecordid>eNqFkD1PwzAURS0EEqGwMntlSPscp04yhpJApSKWIsboxR-QKokr21XLv29RuzPd5Z4zHEIeGUwZFHwm7bAZ-1l7QIQ8uyIRSwXECYjsmkQADOJUJHBL7rzfAEAChYjIVznSyphOdnoMtOy_revCz0CDpdUhOJSBLuwYnO1p3dt9_IxeK1prDDunPTXW0aVd03fs9-g0fdFBy9DZ8Z7cGOy9frjshHzW1XrxFq8-XpeLchXLJOMhljlylebAM2UUGOCgW4OYsVYw3gKKNkeGRhpoC1ZwLYQSSs7l_IQpzTifkOnZK5313mnTbF03oPttGDR_WZpzluaS5QQ8nQG72_73PQLi92f8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Efficient Algorithm to Extract Control Flow-Based Features for IoT Malware Detection</title><source>Oxford Journals Online</source><creator>Nghi Phu, Tran ; Dai Tho, Nguyen ; Huy Hoang, Le ; Ngoc Toan, Nguyen ; Ngoc Binh, Nguyen</creator><creatorcontrib>Nghi Phu, Tran ; Dai Tho, Nguyen ; Huy Hoang, Le ; Ngoc Toan, Nguyen ; Ngoc Binh, Nguyen</creatorcontrib><description>Abstract Control flow-based feature extraction method has the ability to detect malicious code with higher accuracy than traditional text-based methods. Unfortunately, this method has been encountered with the NP-hard problem, which is infeasible for the large-sized and high-complexity programs. To tackle this, we propose a control flow-based feature extraction dynamic programming algorithm for fast extraction of control flow-based features with polynomial time O($N^{2}$), where N is the number of basic blocks in decompiled executable codes. From the experimental results, it is demonstrated that the proposed algorithm is more efficient and effective in detecting malware than the existing ones. Applying our algorithm to an Internet of Things dataset gives better results on three measures: Accuracy = 99.05%, False Positive Rate = 1.31% and False Negative Rate = 0.66%.</description><identifier>ISSN: 0010-4620</identifier><identifier>EISSN: 1460-2067</identifier><identifier>DOI: 10.1093/comjnl/bxaa087</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Computer journal, 2021-04, Vol.64 (4), p.599-609</ispartof><rights>The British Computer Society 2020. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-c8a3d48037dfd0f030ebfaa71b613b0a6b8a1afcf0b9193e66d6dc5c5a3dde133</citedby><cites>FETCH-LOGICAL-c273t-c8a3d48037dfd0f030ebfaa71b613b0a6b8a1afcf0b9193e66d6dc5c5a3dde133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Nghi Phu, Tran</creatorcontrib><creatorcontrib>Dai Tho, Nguyen</creatorcontrib><creatorcontrib>Huy Hoang, Le</creatorcontrib><creatorcontrib>Ngoc Toan, Nguyen</creatorcontrib><creatorcontrib>Ngoc Binh, Nguyen</creatorcontrib><title>An Efficient Algorithm to Extract Control Flow-Based Features for IoT Malware Detection</title><title>Computer journal</title><description>Abstract Control flow-based feature extraction method has the ability to detect malicious code with higher accuracy than traditional text-based methods. Unfortunately, this method has been encountered with the NP-hard problem, which is infeasible for the large-sized and high-complexity programs. To tackle this, we propose a control flow-based feature extraction dynamic programming algorithm for fast extraction of control flow-based features with polynomial time O($N^{2}$), where N is the number of basic blocks in decompiled executable codes. From the experimental results, it is demonstrated that the proposed algorithm is more efficient and effective in detecting malware than the existing ones. Applying our algorithm to an Internet of Things dataset gives better results on three measures: Accuracy = 99.05%, False Positive Rate = 1.31% and False Negative Rate = 0.66%.</description><issn>0010-4620</issn><issn>1460-2067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAURS0EEqGwMntlSPscp04yhpJApSKWIsboxR-QKokr21XLv29RuzPd5Z4zHEIeGUwZFHwm7bAZ-1l7QIQ8uyIRSwXECYjsmkQADOJUJHBL7rzfAEAChYjIVznSyphOdnoMtOy_revCz0CDpdUhOJSBLuwYnO1p3dt9_IxeK1prDDunPTXW0aVd03fs9-g0fdFBy9DZ8Z7cGOy9frjshHzW1XrxFq8-XpeLchXLJOMhljlylebAM2UUGOCgW4OYsVYw3gKKNkeGRhpoC1ZwLYQSSs7l_IQpzTifkOnZK5313mnTbF03oPttGDR_WZpzluaS5QQ8nQG72_73PQLi92f8</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Nghi Phu, Tran</creator><creator>Dai Tho, Nguyen</creator><creator>Huy Hoang, Le</creator><creator>Ngoc Toan, Nguyen</creator><creator>Ngoc Binh, Nguyen</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210401</creationdate><title>An Efficient Algorithm to Extract Control Flow-Based Features for IoT Malware Detection</title><author>Nghi Phu, Tran ; Dai Tho, Nguyen ; Huy Hoang, Le ; Ngoc Toan, Nguyen ; Ngoc Binh, Nguyen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-c8a3d48037dfd0f030ebfaa71b613b0a6b8a1afcf0b9193e66d6dc5c5a3dde133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nghi Phu, Tran</creatorcontrib><creatorcontrib>Dai Tho, Nguyen</creatorcontrib><creatorcontrib>Huy Hoang, Le</creatorcontrib><creatorcontrib>Ngoc Toan, Nguyen</creatorcontrib><creatorcontrib>Ngoc Binh, Nguyen</creatorcontrib><collection>CrossRef</collection><jtitle>Computer journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nghi Phu, Tran</au><au>Dai Tho, Nguyen</au><au>Huy Hoang, Le</au><au>Ngoc Toan, Nguyen</au><au>Ngoc Binh, Nguyen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Algorithm to Extract Control Flow-Based Features for IoT Malware Detection</atitle><jtitle>Computer journal</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>64</volume><issue>4</issue><spage>599</spage><epage>609</epage><pages>599-609</pages><issn>0010-4620</issn><eissn>1460-2067</eissn><abstract>Abstract Control flow-based feature extraction method has the ability to detect malicious code with higher accuracy than traditional text-based methods. Unfortunately, this method has been encountered with the NP-hard problem, which is infeasible for the large-sized and high-complexity programs. To tackle this, we propose a control flow-based feature extraction dynamic programming algorithm for fast extraction of control flow-based features with polynomial time O($N^{2}$), where N is the number of basic blocks in decompiled executable codes. From the experimental results, it is demonstrated that the proposed algorithm is more efficient and effective in detecting malware than the existing ones. Applying our algorithm to an Internet of Things dataset gives better results on three measures: Accuracy = 99.05%, False Positive Rate = 1.31% and False Negative Rate = 0.66%.</abstract><pub>Oxford University Press</pub><doi>10.1093/comjnl/bxaa087</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-4620
ispartof Computer journal, 2021-04, Vol.64 (4), p.599-609
issn 0010-4620
1460-2067
language eng
recordid cdi_crossref_primary_10_1093_comjnl_bxaa087
source Oxford Journals Online
title An Efficient Algorithm to Extract Control Flow-Based Features for IoT Malware Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A41%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Algorithm%20to%20Extract%20Control%20Flow-Based%20Features%20for%20IoT%20Malware%20Detection&rft.jtitle=Computer%20journal&rft.au=Nghi%20Phu,%20Tran&rft.date=2021-04-01&rft.volume=64&rft.issue=4&rft.spage=599&rft.epage=609&rft.pages=599-609&rft.issn=0010-4620&rft.eissn=1460-2067&rft_id=info:doi/10.1093/comjnl/bxaa087&rft_dat=%3Coup_cross%3E10.1093/comjnl/bxaa087%3C/oup_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c273t-c8a3d48037dfd0f030ebfaa71b613b0a6b8a1afcf0b9193e66d6dc5c5a3dde133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/comjnl/bxaa087&rfr_iscdi=true