Loading…

A Comprehensive Analysis of 2D&3D Video Watching of EEG Signals by Increasing PLSR and SVM Classification Results

Abstract Despite the development of two- and three-dimensional (2D&3D) technology, it has attracted the attention of researchers in recent years. This research is done to reveal the detailed effects of 2D in comparison with 3D technology on the human brain waves. The impact of 2D&3D video wa...

Full description

Saved in:
Bibliographic Details
Published in:Computer journal 2020-03, Vol.63 (3), p.425-434
Main Authors: Manshouri, Negin, Kayikcioglu, Temel
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Despite the development of two- and three-dimensional (2D&3D) technology, it has attracted the attention of researchers in recent years. This research is done to reveal the detailed effects of 2D in comparison with 3D technology on the human brain waves. The impact of 2D&3D video watching using electroencephalography (EEG) brain signals is studied. A group of eight healthy volunteers with the average age of 31 ± 3.06 years old participated in this three-stage test. EEG signal recording consisted of three stages: After a bit of relaxation (a), a 2D video was displayed (b), the recording of the signal continued for a short period of time as rest (c), and finally the trial ended. Exactly the same steps were repeated for the 3D video. Power spectrum density (PSD) based on short time Fourier transform (STFT) was used to analyze the brain signals of 2D&3D video viewers. After testing all the EEG frequency bands, delta and theta were extracted as the features. Partial least squares regression (PLSR) and Support vector machine (SVM) classification algorithms were considered in order to classify EEG signals obtained as the result of 2D&3D video watching. Successful classification results were obtained by selecting the correct combinations of effective channels representing the brain regions.
ISSN:0010-4620
1460-2067
DOI:10.1093/comjnl/bxz043