Loading…

New measurements of long-period radial modes using large earthquakes

SUMMARY Radial modes, nS0, are long-period oscillations that describe the radial expansion and contraction of the whole Earth. They are characterized only by their centre frequency and quality factor Q, and provide crucial information about the 1-D structure of the Earth. Radial modes were last meas...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical journal international 2021-02, Vol.224 (2), p.1211-1224
Main Authors: Talavera-Soza, S, Deuss, A
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:SUMMARY Radial modes, nS0, are long-period oscillations that describe the radial expansion and contraction of the whole Earth. They are characterized only by their centre frequency and quality factor Q, and provide crucial information about the 1-D structure of the Earth. Radial modes were last measured more than a decade ago using only one or two earthquakes. Here, we measure radial modes using 16 of the strongest and deepest earthquakes of the last two decades. By introducing more earthquake data into our measurements, we improve our knowledge of 1-D attenuation, as we remove potential earthquake bias from our results. For mode 0S0, which is dominated by compressional energy, we measure a Q value of 5982, much higher than previously measured, and requiring less bulk attenuation in the Earth than previously thought. We also show that radial modes cross-couple (resonate) strongly to their nearest spheroidal mode due to ellipticity and inner core cylindrical anisotropy. Cross-coupling improves the fit between data and synthetics, and gives better estimates of the centre frequency and attenuation value of the radial modes. Including cross-coupling in our measurements results in a systematic shift of the centre frequencies of radial modes towards the Preliminary Reference Earth Model. This shift in centre frequencies, has implications for the strength of the radial anisotropy present in the uppermost inner core, with our cross-coupling results agreeing with lower values of anisotropy than the ones inferred from just measuring the modes in self-coupling (isolation). Furthermore, cross-coupling between radial modes and angular-order two modes provides constraints on cylindrical inner core anisotropy, that will help us improve our knowledge of the 3-D structure of the inner core.
ISSN:0956-540X
1365-246X
DOI:10.1093/gji/ggaa499