Loading…

Crustal and uppermost mantle structures imaged by teleseismic P-wave traveltime tomography beneath the Southeastern Korean Peninsula: implications for a hydrothermal system controlled by the thermally modified lithosphere

SUMMARY The southeastern Korean Peninsula (SeKP) has experienced intense deformation owing to subduction and backarc extension at the eastern continental margin of the Eurasian Plate, leading to the formation of complex tectonic structures. Abnormally high surface heat flux, Cenozoic volcanism, sign...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical journal international 2023-11, Vol.235 (2), p.1639-1657
Main Authors: Lee, Sungho, Song, Jung-Hun, Heo, Dabeen, Rhie, Junkee, Kang, Tae-Seob, Choi, Eunseo, Kim, YoungHee, Kim, Kwang-Hee, Ree, Jin-Han
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:SUMMARY The southeastern Korean Peninsula (SeKP) has experienced intense deformation owing to subduction and backarc extension at the eastern continental margin of the Eurasian Plate, leading to the formation of complex tectonic structures. Abnormally high surface heat flux, Cenozoic volcanism, signatures of mantle degassing and hydrothermal alteration, and several active fault systems with extensional sedimentary basins have been identified; however, the major driving forces that promote local seismic events and hydrothermal activities remain enigmatic. Here, we constructed 3-D P-wave velocity of the crust and upper mantle in the SeKP for the first time using a teleseismic traveltime tomography method and an extensive data set obtained from a dense seismic network. Our model revealed three distinct velocity patterns at different depths: (1) in the upper crust (depth ∼0–10 km), a low-velocity anomaly beneath the Cenozoic sedimentary basin exhibiting a prominent lateral velocity contrasts with higher velocities in the Cretaceous sedimentary and plutonic rocks; (2) a N–S trending low-velocity anomaly extending from the lower crust to the uppermost mantle (depth ∼20–35 km) beneath the major active fault systems interpreted as a thermally or mechanically weakened structure that could transfer high surface heat flux and transport mantle-driven gases and (3) a low-velocity anomaly adjacent to the Cenozoic basin in the upper mantle at depths of 35–55 km interpreted as the higher temperature upper mantle. Via a series of geodynamic simulations, we demonstrated that the extensional deformation at the eastern continental margin during the Early to Middle Miocene locally enhanced the temperature of the crust and upper mantle beneath the SeKP. We propose that a hydrothermal system, resulting from the thermally modified lithosphere of the continental margin, has contributed to the enhanced local seismicity and geothermal activities observed in the SeKP region.
ISSN:0956-540X
1365-246X
DOI:10.1093/gji/ggad319