Loading…

Active and passive salt diapirs: a numerical study

Salt diapirs dominate the structure in many sedimentary basins and control the preservation and migration of hydrocarbon. The formation of salt diapirs generally falls into two endmember models: active (up-building) and passive (down-building) diapirism. In the active model, salt diapirs rise from s...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical journal international 2024-09, Vol.239 (1), p.621-636
Main Authors: Gou, Yiren, Liu, Mian
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Salt diapirs dominate the structure in many sedimentary basins and control the preservation and migration of hydrocarbon. The formation of salt diapirs generally falls into two endmember models: active (up-building) and passive (down-building) diapirism. In the active model, salt diapirs rise from salt buoyancy to pierce through the sedimentary overburden, whereas in the passive model, salt diapirs result from differential loading of sediments during deposition. These endmember models are mostly conceptual or kinematic, the mechanics of active and passive diapirism and their relative roles and interactions in the formation of salt diapirs remain uncertain. Here, we use two-dimensional high-resolution numerical models to investigate the primary factors and critical conditions for active and passive diapirism. Our results indicate that it is improper to use driving mechanisms to classify salt diapirs, because the buoyancy-driven active salt diapirism involves differential loading, while the passive diapirism requires salt buoyancy. The rise of salt diapirs is more sensitive to the effective viscosity of the overburden than to the salt viscosity. Stiff overburdens could prevent the rise of salt diapirs, but they could be pierced by salt diapirs if plastic yield of the overburden is allowed. During deposition, the coupled salt-sediment deformation, driven by both salt buoyancy and differential loading of sediments, can lead to various diapiric salt structures and minibasins. Regional tectonic stress generally promotes salt diapirism by enhancing strain weakening of salts and overburdens. We suggest that the classification of active and passive salt diapirism is an oversimplification in most cases. We propose a general model of the formation of salt diapirs that usually begins with dome initiation driven by salt buoyancy, followed by syndepositional down-building controlled by sedimentation and differential loading and ends with canopy formation when sedimentation stops.
ISSN:0956-540X
1365-246X
DOI:10.1093/gji/ggae284