Loading…

Calibration of SQUID vector magnetometers in full tensor gradiometry systems

Measurement of magnetic vector or tensor quantities, namely of field or field gradient, delivers more details of the underlying geological setting in geomagnetic prospection than a scalar measurement of a single component or of the scalar total magnetic intensity. Currently, highest measurement reso...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical journal international 2014-08, Vol.198 (2), p.954-964
Main Authors: Schiffler, M., Queitsch, M., Stolz, R., Chwala, A., Krech, W., Meyer, H.-G., Kukowski, N.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c297t-b6fe6de61d3e03214fa52e5554d12d22125ed06d5289d4151df711340b4c300a3
cites cdi_FETCH-LOGICAL-c297t-b6fe6de61d3e03214fa52e5554d12d22125ed06d5289d4151df711340b4c300a3
container_end_page 964
container_issue 2
container_start_page 954
container_title Geophysical journal international
container_volume 198
creator Schiffler, M.
Queitsch, M.
Stolz, R.
Chwala, A.
Krech, W.
Meyer, H.-G.
Kukowski, N.
description Measurement of magnetic vector or tensor quantities, namely of field or field gradient, delivers more details of the underlying geological setting in geomagnetic prospection than a scalar measurement of a single component or of the scalar total magnetic intensity. Currently, highest measurement resolutions are achievable with superconducting quantum interference device (SQUID)-based systems. Due to technological limitations, it is necessary to suppress the parasitic magnetic field response from the SQUID gradiometer signals, which are a superposition of one tensor component and all three orthogonal magnetic field components. This in turn requires an accurate estimation of the local magnetic field. Such a measurement can itself be achieved via three additional orthogonal SQUID reference magnetometers. It is the calibration of such a SQUID reference vector magnetometer system that is the subject of this paper. A number of vector magnetometer calibration methods are described in the literature. We present two methods that we have implemented and compared, for their suitability of rapid data processing and integration into a full tensor magnetic gradiometry, SQUID-based, system. We conclude that the calibration routines must necessarily model fabrication misalignments, field offset and scale factors, and include comparison with a reference magnetic field. In order to enable fast processing on site, the software must be able to function as a stand-alone toolbox.
doi_str_mv 10.1093/gji/ggu173
format article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_gji_ggu173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/gji/ggu173</oup_id><sourcerecordid>10.1093/gji/ggu173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-b6fe6de61d3e03214fa52e5554d12d22125ed06d5289d4151df711340b4c300a3</originalsourceid><addsrcrecordid>eNp9kM1Kw0AYRQdRMFY3PsFs3Aix881fm6VEq4WCiBa6C9PMNyElP2VmIuTtbYlrV3dxDndxCLkH9gQsE_PqUM-raoCFuCAJCK1SLvXukiQsUzpVku2uyU0IB8ZAglwmZJObpt57E-u-o72jX5_b9Qv9wTL2nram6jD2LUb0gdYddUPT0IhdOMHKG1ufmR9pGEPENtySK2eagHd_OyPb1et3_p5uPt7W-fMmLXm2iOleO9QWNViBTHCQziiOSilpgVvOgSu0TFvFl5mVoMC6BYCQbC9LwZgRM_I4_Za-D8GjK46-bo0fC2DFuUNx6lBMHU7ywyT3w_E_7xdk7F7J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Calibration of SQUID vector magnetometers in full tensor gradiometry systems</title><source>Oxford Open</source><creator>Schiffler, M. ; Queitsch, M. ; Stolz, R. ; Chwala, A. ; Krech, W. ; Meyer, H.-G. ; Kukowski, N.</creator><creatorcontrib>Schiffler, M. ; Queitsch, M. ; Stolz, R. ; Chwala, A. ; Krech, W. ; Meyer, H.-G. ; Kukowski, N.</creatorcontrib><description>Measurement of magnetic vector or tensor quantities, namely of field or field gradient, delivers more details of the underlying geological setting in geomagnetic prospection than a scalar measurement of a single component or of the scalar total magnetic intensity. Currently, highest measurement resolutions are achievable with superconducting quantum interference device (SQUID)-based systems. Due to technological limitations, it is necessary to suppress the parasitic magnetic field response from the SQUID gradiometer signals, which are a superposition of one tensor component and all three orthogonal magnetic field components. This in turn requires an accurate estimation of the local magnetic field. Such a measurement can itself be achieved via three additional orthogonal SQUID reference magnetometers. It is the calibration of such a SQUID reference vector magnetometer system that is the subject of this paper. A number of vector magnetometer calibration methods are described in the literature. We present two methods that we have implemented and compared, for their suitability of rapid data processing and integration into a full tensor magnetic gradiometry, SQUID-based, system. We conclude that the calibration routines must necessarily model fabrication misalignments, field offset and scale factors, and include comparison with a reference magnetic field. In order to enable fast processing on site, the software must be able to function as a stand-alone toolbox.</description><identifier>ISSN: 0956-540X</identifier><identifier>EISSN: 1365-246X</identifier><identifier>DOI: 10.1093/gji/ggu173</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Geophysical journal international, 2014-08, Vol.198 (2), p.954-964</ispartof><rights>The Authors 2014. Published by Oxford University Press on behalf of The Royal Astronomical Society. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-b6fe6de61d3e03214fa52e5554d12d22125ed06d5289d4151df711340b4c300a3</citedby><cites>FETCH-LOGICAL-c297t-b6fe6de61d3e03214fa52e5554d12d22125ed06d5289d4151df711340b4c300a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/gji/ggu173$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Schiffler, M.</creatorcontrib><creatorcontrib>Queitsch, M.</creatorcontrib><creatorcontrib>Stolz, R.</creatorcontrib><creatorcontrib>Chwala, A.</creatorcontrib><creatorcontrib>Krech, W.</creatorcontrib><creatorcontrib>Meyer, H.-G.</creatorcontrib><creatorcontrib>Kukowski, N.</creatorcontrib><title>Calibration of SQUID vector magnetometers in full tensor gradiometry systems</title><title>Geophysical journal international</title><addtitle>Geophys. J. Int</addtitle><description>Measurement of magnetic vector or tensor quantities, namely of field or field gradient, delivers more details of the underlying geological setting in geomagnetic prospection than a scalar measurement of a single component or of the scalar total magnetic intensity. Currently, highest measurement resolutions are achievable with superconducting quantum interference device (SQUID)-based systems. Due to technological limitations, it is necessary to suppress the parasitic magnetic field response from the SQUID gradiometer signals, which are a superposition of one tensor component and all three orthogonal magnetic field components. This in turn requires an accurate estimation of the local magnetic field. Such a measurement can itself be achieved via three additional orthogonal SQUID reference magnetometers. It is the calibration of such a SQUID reference vector magnetometer system that is the subject of this paper. A number of vector magnetometer calibration methods are described in the literature. We present two methods that we have implemented and compared, for their suitability of rapid data processing and integration into a full tensor magnetic gradiometry, SQUID-based, system. We conclude that the calibration routines must necessarily model fabrication misalignments, field offset and scale factors, and include comparison with a reference magnetic field. In order to enable fast processing on site, the software must be able to function as a stand-alone toolbox.</description><issn>0956-540X</issn><issn>1365-246X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Kw0AYRQdRMFY3PsFs3Aix881fm6VEq4WCiBa6C9PMNyElP2VmIuTtbYlrV3dxDndxCLkH9gQsE_PqUM-raoCFuCAJCK1SLvXukiQsUzpVku2uyU0IB8ZAglwmZJObpt57E-u-o72jX5_b9Qv9wTL2nram6jD2LUb0gdYddUPT0IhdOMHKG1ufmR9pGEPENtySK2eagHd_OyPb1et3_p5uPt7W-fMmLXm2iOleO9QWNViBTHCQziiOSilpgVvOgSu0TFvFl5mVoMC6BYCQbC9LwZgRM_I4_Za-D8GjK46-bo0fC2DFuUNx6lBMHU7ywyT3w_E_7xdk7F7J</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Schiffler, M.</creator><creator>Queitsch, M.</creator><creator>Stolz, R.</creator><creator>Chwala, A.</creator><creator>Krech, W.</creator><creator>Meyer, H.-G.</creator><creator>Kukowski, N.</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140801</creationdate><title>Calibration of SQUID vector magnetometers in full tensor gradiometry systems</title><author>Schiffler, M. ; Queitsch, M. ; Stolz, R. ; Chwala, A. ; Krech, W. ; Meyer, H.-G. ; Kukowski, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-b6fe6de61d3e03214fa52e5554d12d22125ed06d5289d4151df711340b4c300a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schiffler, M.</creatorcontrib><creatorcontrib>Queitsch, M.</creatorcontrib><creatorcontrib>Stolz, R.</creatorcontrib><creatorcontrib>Chwala, A.</creatorcontrib><creatorcontrib>Krech, W.</creatorcontrib><creatorcontrib>Meyer, H.-G.</creatorcontrib><creatorcontrib>Kukowski, N.</creatorcontrib><collection>CrossRef</collection><jtitle>Geophysical journal international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schiffler, M.</au><au>Queitsch, M.</au><au>Stolz, R.</au><au>Chwala, A.</au><au>Krech, W.</au><au>Meyer, H.-G.</au><au>Kukowski, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calibration of SQUID vector magnetometers in full tensor gradiometry systems</atitle><jtitle>Geophysical journal international</jtitle><stitle>Geophys. J. Int</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>198</volume><issue>2</issue><spage>954</spage><epage>964</epage><pages>954-964</pages><issn>0956-540X</issn><eissn>1365-246X</eissn><abstract>Measurement of magnetic vector or tensor quantities, namely of field or field gradient, delivers more details of the underlying geological setting in geomagnetic prospection than a scalar measurement of a single component or of the scalar total magnetic intensity. Currently, highest measurement resolutions are achievable with superconducting quantum interference device (SQUID)-based systems. Due to technological limitations, it is necessary to suppress the parasitic magnetic field response from the SQUID gradiometer signals, which are a superposition of one tensor component and all three orthogonal magnetic field components. This in turn requires an accurate estimation of the local magnetic field. Such a measurement can itself be achieved via three additional orthogonal SQUID reference magnetometers. It is the calibration of such a SQUID reference vector magnetometer system that is the subject of this paper. A number of vector magnetometer calibration methods are described in the literature. We present two methods that we have implemented and compared, for their suitability of rapid data processing and integration into a full tensor magnetic gradiometry, SQUID-based, system. We conclude that the calibration routines must necessarily model fabrication misalignments, field offset and scale factors, and include comparison with a reference magnetic field. In order to enable fast processing on site, the software must be able to function as a stand-alone toolbox.</abstract><pub>Oxford University Press</pub><doi>10.1093/gji/ggu173</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0956-540X
ispartof Geophysical journal international, 2014-08, Vol.198 (2), p.954-964
issn 0956-540X
1365-246X
language eng
recordid cdi_crossref_primary_10_1093_gji_ggu173
source Oxford Open
title Calibration of SQUID vector magnetometers in full tensor gradiometry systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A37%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calibration%20of%20SQUID%20vector%20magnetometers%20in%20full%20tensor%20gradiometry%20systems&rft.jtitle=Geophysical%20journal%20international&rft.au=Schiffler,%20M.&rft.date=2014-08-01&rft.volume=198&rft.issue=2&rft.spage=954&rft.epage=964&rft.pages=954-964&rft.issn=0956-540X&rft.eissn=1365-246X&rft_id=info:doi/10.1093/gji/ggu173&rft_dat=%3Coup_TOX%3E10.1093/gji/ggu173%3C/oup_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-b6fe6de61d3e03214fa52e5554d12d22125ed06d5289d4151df711340b4c300a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/gji/ggu173&rfr_iscdi=true