Loading…
Impacts of GNSS position offsets on global frame stability
While it has been known for some time that offsets in the time-series of Global Navigation Satellite System (GNSS) position estimates degrade station velocity determinations, the magnitude of the effect has not been clear. Using products of the International GNSS Service (IGS), we assess the impact...
Saved in:
Published in: | Geophysical journal international 2016-01, Vol.204 (1), p.480-487 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a320t-8969b0e6664b9389cbafc42a0c69b4aca7a7aaf5ad9b507d749039a0bbe673323 |
---|---|
cites | cdi_FETCH-LOGICAL-a320t-8969b0e6664b9389cbafc42a0c69b4aca7a7aaf5ad9b507d749039a0bbe673323 |
container_end_page | 487 |
container_issue | 1 |
container_start_page | 480 |
container_title | Geophysical journal international |
container_volume | 204 |
creator | Griffiths, J. Ray, J. |
description | While it has been known for some time that offsets in the time-series of Global Navigation Satellite System (GNSS) position estimates degrade station velocity determinations, the magnitude of the effect has not been clear. Using products of the International GNSS Service (IGS), we assess the impact empirically by injecting progressively larger numbers of artificial offsets and solving for a series of long-term secular GNSS frames. Our results show that the stability of the IGS global frame datum is fairly robust, with significant effects at the formal error level only for the R
x
(and Y-pole) and R
z
rotational orientations. On the other hand, station velocity estimates are more seriously affected, especially the vertical component. For the typical IGS station, the mean vertical rate uncertainty is already limited to 0.34 mm yr−1 for the current set of position discontinuities. If the number of breaks doubles, which might occur using newer detection schemes, then that uncertainty will worsen by ∼40 per cent to 0.48 mm yr−1. This error source is generally a more important component of realistic velocity uncertainties than any other, including accounting for temporal correlations in the GNSS data. The only way to improve future GNSS velocity estimates is to severely limit manmade displacements at the tracking stations. |
doi_str_mv | 10.1093/gji/ggv455 |
format | article |
fullrecord | <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_gji_ggv455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/gji/ggv455</oup_id><sourcerecordid>10.1093/gji/ggv455</sourcerecordid><originalsourceid>FETCH-LOGICAL-a320t-8969b0e6664b9389cbafc42a0c69b4aca7a7aaf5ad9b507d749039a0bbe673323</originalsourceid><addsrcrecordid>eNp9j01Lw0AURQdRMFY3_oLZuBFi32Q-knEnxdZC0UUVugtvpjNhStKETBT6702Ja7mLB_cdLhxC7hk8MdB8Xh3CvKp-hJQXJGFcyTQTandJEtBSpVLA7prcxHgAYIKJIiHP66ZDO0Taerp6325p18YwhPY4Fj668-NIq7o1WFPfY-NoHNCEOgynW3LlsY7u7u_OyNfy9XPxlm4-VuvFyyZFnsGQFlppA04pJYzmhbYGvRUZgh17gRbzMegl7rWRkO9zoYFrBGOcyjnP-Iw8Tru2b2PsnS-7PjTYn0oG5dm6HK3LyXqEHya4_e7-434BtF9Yeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Impacts of GNSS position offsets on global frame stability</title><source>Oxford Open</source><creator>Griffiths, J. ; Ray, J.</creator><creatorcontrib>Griffiths, J. ; Ray, J.</creatorcontrib><description>While it has been known for some time that offsets in the time-series of Global Navigation Satellite System (GNSS) position estimates degrade station velocity determinations, the magnitude of the effect has not been clear. Using products of the International GNSS Service (IGS), we assess the impact empirically by injecting progressively larger numbers of artificial offsets and solving for a series of long-term secular GNSS frames. Our results show that the stability of the IGS global frame datum is fairly robust, with significant effects at the formal error level only for the R
x
(and Y-pole) and R
z
rotational orientations. On the other hand, station velocity estimates are more seriously affected, especially the vertical component. For the typical IGS station, the mean vertical rate uncertainty is already limited to 0.34 mm yr−1 for the current set of position discontinuities. If the number of breaks doubles, which might occur using newer detection schemes, then that uncertainty will worsen by ∼40 per cent to 0.48 mm yr−1. This error source is generally a more important component of realistic velocity uncertainties than any other, including accounting for temporal correlations in the GNSS data. The only way to improve future GNSS velocity estimates is to severely limit manmade displacements at the tracking stations.</description><identifier>ISSN: 0956-540X</identifier><identifier>EISSN: 1365-246X</identifier><identifier>DOI: 10.1093/gji/ggv455</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Geophysical journal international, 2016-01, Vol.204 (1), p.480-487</ispartof><rights>Published by Oxford University Press on behalf of The Royal Astronomical Society 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a320t-8969b0e6664b9389cbafc42a0c69b4aca7a7aaf5ad9b507d749039a0bbe673323</citedby><cites>FETCH-LOGICAL-a320t-8969b0e6664b9389cbafc42a0c69b4aca7a7aaf5ad9b507d749039a0bbe673323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Griffiths, J.</creatorcontrib><creatorcontrib>Ray, J.</creatorcontrib><title>Impacts of GNSS position offsets on global frame stability</title><title>Geophysical journal international</title><description>While it has been known for some time that offsets in the time-series of Global Navigation Satellite System (GNSS) position estimates degrade station velocity determinations, the magnitude of the effect has not been clear. Using products of the International GNSS Service (IGS), we assess the impact empirically by injecting progressively larger numbers of artificial offsets and solving for a series of long-term secular GNSS frames. Our results show that the stability of the IGS global frame datum is fairly robust, with significant effects at the formal error level only for the R
x
(and Y-pole) and R
z
rotational orientations. On the other hand, station velocity estimates are more seriously affected, especially the vertical component. For the typical IGS station, the mean vertical rate uncertainty is already limited to 0.34 mm yr−1 for the current set of position discontinuities. If the number of breaks doubles, which might occur using newer detection schemes, then that uncertainty will worsen by ∼40 per cent to 0.48 mm yr−1. This error source is generally a more important component of realistic velocity uncertainties than any other, including accounting for temporal correlations in the GNSS data. The only way to improve future GNSS velocity estimates is to severely limit manmade displacements at the tracking stations.</description><issn>0956-540X</issn><issn>1365-246X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9j01Lw0AURQdRMFY3_oLZuBFi32Q-knEnxdZC0UUVugtvpjNhStKETBT6702Ja7mLB_cdLhxC7hk8MdB8Xh3CvKp-hJQXJGFcyTQTandJEtBSpVLA7prcxHgAYIKJIiHP66ZDO0Taerp6325p18YwhPY4Fj668-NIq7o1WFPfY-NoHNCEOgynW3LlsY7u7u_OyNfy9XPxlm4-VuvFyyZFnsGQFlppA04pJYzmhbYGvRUZgh17gRbzMegl7rWRkO9zoYFrBGOcyjnP-Iw8Tru2b2PsnS-7PjTYn0oG5dm6HK3LyXqEHya4_e7-434BtF9Yeg</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Griffiths, J.</creator><creator>Ray, J.</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160101</creationdate><title>Impacts of GNSS position offsets on global frame stability</title><author>Griffiths, J. ; Ray, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a320t-8969b0e6664b9389cbafc42a0c69b4aca7a7aaf5ad9b507d749039a0bbe673323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Griffiths, J.</creatorcontrib><creatorcontrib>Ray, J.</creatorcontrib><collection>CrossRef</collection><jtitle>Geophysical journal international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Griffiths, J.</au><au>Ray, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impacts of GNSS position offsets on global frame stability</atitle><jtitle>Geophysical journal international</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>204</volume><issue>1</issue><spage>480</spage><epage>487</epage><pages>480-487</pages><issn>0956-540X</issn><eissn>1365-246X</eissn><abstract>While it has been known for some time that offsets in the time-series of Global Navigation Satellite System (GNSS) position estimates degrade station velocity determinations, the magnitude of the effect has not been clear. Using products of the International GNSS Service (IGS), we assess the impact empirically by injecting progressively larger numbers of artificial offsets and solving for a series of long-term secular GNSS frames. Our results show that the stability of the IGS global frame datum is fairly robust, with significant effects at the formal error level only for the R
x
(and Y-pole) and R
z
rotational orientations. On the other hand, station velocity estimates are more seriously affected, especially the vertical component. For the typical IGS station, the mean vertical rate uncertainty is already limited to 0.34 mm yr−1 for the current set of position discontinuities. If the number of breaks doubles, which might occur using newer detection schemes, then that uncertainty will worsen by ∼40 per cent to 0.48 mm yr−1. This error source is generally a more important component of realistic velocity uncertainties than any other, including accounting for temporal correlations in the GNSS data. The only way to improve future GNSS velocity estimates is to severely limit manmade displacements at the tracking stations.</abstract><pub>Oxford University Press</pub><doi>10.1093/gji/ggv455</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-540X |
ispartof | Geophysical journal international, 2016-01, Vol.204 (1), p.480-487 |
issn | 0956-540X 1365-246X |
language | eng |
recordid | cdi_crossref_primary_10_1093_gji_ggv455 |
source | Oxford Open |
title | Impacts of GNSS position offsets on global frame stability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A59%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impacts%20of%20GNSS%20position%20offsets%20on%20global%20frame%20stability&rft.jtitle=Geophysical%20journal%20international&rft.au=Griffiths,%20J.&rft.date=2016-01-01&rft.volume=204&rft.issue=1&rft.spage=480&rft.epage=487&rft.pages=480-487&rft.issn=0956-540X&rft.eissn=1365-246X&rft_id=info:doi/10.1093/gji/ggv455&rft_dat=%3Coup_cross%3E10.1093/gji/ggv455%3C/oup_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a320t-8969b0e6664b9389cbafc42a0c69b4aca7a7aaf5ad9b507d749039a0bbe673323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/gji/ggv455&rfr_iscdi=true |