Loading…

P–260 Towards better explainable deep learning models for embryo selection in ART

Saved in:
Bibliographic Details
Published in:Human reproduction (Oxford) 2021-08, Vol.36 (Supplement_1)
Main Authors: Sharma, A, Haugen, T, Hammer, H, Riegler, M, Stensen, M
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue Supplement_1
container_start_page
container_title Human reproduction (Oxford)
container_volume 36
creator Sharma, A
Haugen, T
Hammer, H
Riegler, M
Stensen, M
description
doi_str_mv 10.1093/humrep/deab130.259
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_humrep_deab130_259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_humrep_deab130_259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c819-a0105c848b8bcc68e6416a29f1f891624a37f87b83968d9d98e721a9a6b4bb2e3</originalsourceid><addsrcrecordid>eNot0EtOwzAYBGALgUQoXICVL5DWv5049rKqeEmVQJC9ZTu_ISgv2UHQHXfghpyEonY1sxjN4iPkGtgSmBart48-4rRq0DoQbMlLfUIyKCTLuSjZKckYlyoHkHBOLlJ6Z2xflczIy9Pv9w-XjNbjp41Nog7nGSPFr6mz7WBdh7RBnGiHNg7t8Er7scEu0TDuR72Lu5Em7NDP7TjQdqDr5_qSnAXbJbw65oLUtzf15j7fPt49bNbb3CvQuWXASq8K5ZTzXiqUBUjLdYCgNEheWFEFVTkltFSNbrTCioPVVrrCOY5iQfjh1scxpYjBTLHtbdwZYOZfxRxUzFHF7FXEH_ruWTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>P–260 Towards better explainable deep learning models for embryo selection in ART</title><source>Oxford Journals Online</source><creator>Sharma, A ; Haugen, T ; Hammer, H ; Riegler, M ; Stensen, M</creator><creatorcontrib>Sharma, A ; Haugen, T ; Hammer, H ; Riegler, M ; Stensen, M</creatorcontrib><identifier>ISSN: 0268-1161</identifier><identifier>EISSN: 1460-2350</identifier><identifier>DOI: 10.1093/humrep/deab130.259</identifier><language>eng</language><ispartof>Human reproduction (Oxford), 2021-08, Vol.36 (Supplement_1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sharma, A</creatorcontrib><creatorcontrib>Haugen, T</creatorcontrib><creatorcontrib>Hammer, H</creatorcontrib><creatorcontrib>Riegler, M</creatorcontrib><creatorcontrib>Stensen, M</creatorcontrib><title>P–260 Towards better explainable deep learning models for embryo selection in ART</title><title>Human reproduction (Oxford)</title><issn>0268-1161</issn><issn>1460-2350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNot0EtOwzAYBGALgUQoXICVL5DWv5049rKqeEmVQJC9ZTu_ISgv2UHQHXfghpyEonY1sxjN4iPkGtgSmBart48-4rRq0DoQbMlLfUIyKCTLuSjZKckYlyoHkHBOLlJ6Z2xflczIy9Pv9w-XjNbjp41Nog7nGSPFr6mz7WBdh7RBnGiHNg7t8Er7scEu0TDuR72Lu5Em7NDP7TjQdqDr5_qSnAXbJbw65oLUtzf15j7fPt49bNbb3CvQuWXASq8K5ZTzXiqUBUjLdYCgNEheWFEFVTkltFSNbrTCioPVVrrCOY5iQfjh1scxpYjBTLHtbdwZYOZfxRxUzFHF7FXEH_ruWTg</recordid><startdate>20210806</startdate><enddate>20210806</enddate><creator>Sharma, A</creator><creator>Haugen, T</creator><creator>Hammer, H</creator><creator>Riegler, M</creator><creator>Stensen, M</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210806</creationdate><title>P–260 Towards better explainable deep learning models for embryo selection in ART</title><author>Sharma, A ; Haugen, T ; Hammer, H ; Riegler, M ; Stensen, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c819-a0105c848b8bcc68e6416a29f1f891624a37f87b83968d9d98e721a9a6b4bb2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, A</creatorcontrib><creatorcontrib>Haugen, T</creatorcontrib><creatorcontrib>Hammer, H</creatorcontrib><creatorcontrib>Riegler, M</creatorcontrib><creatorcontrib>Stensen, M</creatorcontrib><collection>CrossRef</collection><jtitle>Human reproduction (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, A</au><au>Haugen, T</au><au>Hammer, H</au><au>Riegler, M</au><au>Stensen, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>P–260 Towards better explainable deep learning models for embryo selection in ART</atitle><jtitle>Human reproduction (Oxford)</jtitle><date>2021-08-06</date><risdate>2021</risdate><volume>36</volume><issue>Supplement_1</issue><issn>0268-1161</issn><eissn>1460-2350</eissn><doi>10.1093/humrep/deab130.259</doi></addata></record>
fulltext fulltext
identifier ISSN: 0268-1161
ispartof Human reproduction (Oxford), 2021-08, Vol.36 (Supplement_1)
issn 0268-1161
1460-2350
language eng
recordid cdi_crossref_primary_10_1093_humrep_deab130_259
source Oxford Journals Online
title P–260 Towards better explainable deep learning models for embryo selection in ART
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A41%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=P%E2%80%93260%20Towards%20better%20explainable%20deep%20learning%20models%20for%20embryo%20selection%20in%20ART&rft.jtitle=Human%20reproduction%20(Oxford)&rft.au=Sharma,%20A&rft.date=2021-08-06&rft.volume=36&rft.issue=Supplement_1&rft.issn=0268-1161&rft.eissn=1460-2350&rft_id=info:doi/10.1093/humrep/deab130.259&rft_dat=%3Ccrossref%3E10_1093_humrep_deab130_259%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c819-a0105c848b8bcc68e6416a29f1f891624a37f87b83968d9d98e721a9a6b4bb2e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true