Loading…

Modelling and forecasting stock–recruitment: current and future perspectives

This paper presents a brief review of the present state of knowledge in stock–recruitment forecasting, including process and current methodological challenges to predicting stock–recruitment. The discussion covers the apparent inability of models to accurately forecast recruitment even when environm...

Full description

Saved in:
Bibliographic Details
Published in:ICES journal of marine science 2014-10, Vol.71 (8), p.2307-2322
Main Authors: Subbey, Sam, Devine, Jennifer A., Schaarschmidt, Ute, Nash, Richard D.M.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c279t-24c2da5b5c7784a9c9ced696a0447ddabff09584859431c6a65bf9b51199f833
cites cdi_FETCH-LOGICAL-c279t-24c2da5b5c7784a9c9ced696a0447ddabff09584859431c6a65bf9b51199f833
container_end_page 2322
container_issue 8
container_start_page 2307
container_title ICES journal of marine science
container_volume 71
creator Subbey, Sam
Devine, Jennifer A.
Schaarschmidt, Ute
Nash, Richard D.M.
description This paper presents a brief review of the present state of knowledge in stock–recruitment forecasting, including process and current methodological challenges to predicting stock–recruitment. The discussion covers the apparent inability of models to accurately forecast recruitment even when environmental covariates are included as explanatory variables. The review shows that despite the incremental success in the past hundred years, substantial challenges remain if the process of modelling and forecasting stock–recruitment is to become relevant to fisheries science and management in the next 100 years.
doi_str_mv 10.1093/icesjms/fsu148
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_icesjms_fsu148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_icesjms_fsu148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-24c2da5b5c7784a9c9ced696a0447ddabff09584859431c6a65bf9b51199f833</originalsourceid><addsrcrecordid>eNotkM1OwzAQhC0EEqVw5ZwXSGvHdmJzQxV_UoFL75GztlFK_uR1kLjxDrwhT0Ki9LSzo9Fo9BFyy-iGUc23NTg8trj1ODKhzshqcmWqM6XPZy1FyhnXl-QK8UgpLUROV-TttbeuaeruIzGdTXwfHBiM84-xh8-_n9_JCWMdW9fFuwTGECaxhMc4BpcMLuDgINZfDq_JhTcNupvTXZPD48Nh95zu359edvf7FLJCxzQTkFkjKwlFoYTRoMHZXOeGClFYayrvp-1KKKkFZ5CbXFZeV5Ixrb3ifE02Sy2EHjE4Xw6hbk34LhktZxjlCUa5wOD_k59Ycg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modelling and forecasting stock–recruitment: current and future perspectives</title><source>Oxford Journals Open Access Collection</source><creator>Subbey, Sam ; Devine, Jennifer A. ; Schaarschmidt, Ute ; Nash, Richard D.M.</creator><creatorcontrib>Subbey, Sam ; Devine, Jennifer A. ; Schaarschmidt, Ute ; Nash, Richard D.M.</creatorcontrib><description>This paper presents a brief review of the present state of knowledge in stock–recruitment forecasting, including process and current methodological challenges to predicting stock–recruitment. The discussion covers the apparent inability of models to accurately forecast recruitment even when environmental covariates are included as explanatory variables. The review shows that despite the incremental success in the past hundred years, substantial challenges remain if the process of modelling and forecasting stock–recruitment is to become relevant to fisheries science and management in the next 100 years.</description><identifier>ISSN: 1054-3139</identifier><identifier>EISSN: 1095-9289</identifier><identifier>DOI: 10.1093/icesjms/fsu148</identifier><language>eng</language><ispartof>ICES journal of marine science, 2014-10, Vol.71 (8), p.2307-2322</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-24c2da5b5c7784a9c9ced696a0447ddabff09584859431c6a65bf9b51199f833</citedby><cites>FETCH-LOGICAL-c279t-24c2da5b5c7784a9c9ced696a0447ddabff09584859431c6a65bf9b51199f833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Subbey, Sam</creatorcontrib><creatorcontrib>Devine, Jennifer A.</creatorcontrib><creatorcontrib>Schaarschmidt, Ute</creatorcontrib><creatorcontrib>Nash, Richard D.M.</creatorcontrib><title>Modelling and forecasting stock–recruitment: current and future perspectives</title><title>ICES journal of marine science</title><description>This paper presents a brief review of the present state of knowledge in stock–recruitment forecasting, including process and current methodological challenges to predicting stock–recruitment. The discussion covers the apparent inability of models to accurately forecast recruitment even when environmental covariates are included as explanatory variables. The review shows that despite the incremental success in the past hundred years, substantial challenges remain if the process of modelling and forecasting stock–recruitment is to become relevant to fisheries science and management in the next 100 years.</description><issn>1054-3139</issn><issn>1095-9289</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNotkM1OwzAQhC0EEqVw5ZwXSGvHdmJzQxV_UoFL75GztlFK_uR1kLjxDrwhT0Ki9LSzo9Fo9BFyy-iGUc23NTg8trj1ODKhzshqcmWqM6XPZy1FyhnXl-QK8UgpLUROV-TttbeuaeruIzGdTXwfHBiM84-xh8-_n9_JCWMdW9fFuwTGECaxhMc4BpcMLuDgINZfDq_JhTcNupvTXZPD48Nh95zu359edvf7FLJCxzQTkFkjKwlFoYTRoMHZXOeGClFYayrvp-1KKKkFZ5CbXFZeV5Ixrb3ifE02Sy2EHjE4Xw6hbk34LhktZxjlCUa5wOD_k59Ycg</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Subbey, Sam</creator><creator>Devine, Jennifer A.</creator><creator>Schaarschmidt, Ute</creator><creator>Nash, Richard D.M.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20141001</creationdate><title>Modelling and forecasting stock–recruitment: current and future perspectives</title><author>Subbey, Sam ; Devine, Jennifer A. ; Schaarschmidt, Ute ; Nash, Richard D.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-24c2da5b5c7784a9c9ced696a0447ddabff09584859431c6a65bf9b51199f833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Subbey, Sam</creatorcontrib><creatorcontrib>Devine, Jennifer A.</creatorcontrib><creatorcontrib>Schaarschmidt, Ute</creatorcontrib><creatorcontrib>Nash, Richard D.M.</creatorcontrib><collection>CrossRef</collection><jtitle>ICES journal of marine science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Subbey, Sam</au><au>Devine, Jennifer A.</au><au>Schaarschmidt, Ute</au><au>Nash, Richard D.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling and forecasting stock–recruitment: current and future perspectives</atitle><jtitle>ICES journal of marine science</jtitle><date>2014-10-01</date><risdate>2014</risdate><volume>71</volume><issue>8</issue><spage>2307</spage><epage>2322</epage><pages>2307-2322</pages><issn>1054-3139</issn><eissn>1095-9289</eissn><abstract>This paper presents a brief review of the present state of knowledge in stock–recruitment forecasting, including process and current methodological challenges to predicting stock–recruitment. The discussion covers the apparent inability of models to accurately forecast recruitment even when environmental covariates are included as explanatory variables. The review shows that despite the incremental success in the past hundred years, substantial challenges remain if the process of modelling and forecasting stock–recruitment is to become relevant to fisheries science and management in the next 100 years.</abstract><doi>10.1093/icesjms/fsu148</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1054-3139
ispartof ICES journal of marine science, 2014-10, Vol.71 (8), p.2307-2322
issn 1054-3139
1095-9289
language eng
recordid cdi_crossref_primary_10_1093_icesjms_fsu148
source Oxford Journals Open Access Collection
title Modelling and forecasting stock–recruitment: current and future perspectives
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A49%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20and%20forecasting%20stock%E2%80%93recruitment:%20current%20and%20future%20perspectives&rft.jtitle=ICES%20journal%20of%20marine%20science&rft.au=Subbey,%20Sam&rft.date=2014-10-01&rft.volume=71&rft.issue=8&rft.spage=2307&rft.epage=2322&rft.pages=2307-2322&rft.issn=1054-3139&rft.eissn=1095-9289&rft_id=info:doi/10.1093/icesjms/fsu148&rft_dat=%3Ccrossref%3E10_1093_icesjms_fsu148%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c279t-24c2da5b5c7784a9c9ced696a0447ddabff09584859431c6a65bf9b51199f833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true