Loading…

Periodic motion of a mass–spring system

The equations of planar motion of a mass attached to two anchored massless springs form a symmetric Hamiltonian system. The system has a single dimensionless parameter L, corresponding to the spacing between the anchors. For L > 1, there is a stable equilibrium at which the springs are in tension...

Full description

Saved in:
Bibliographic Details
Published in:IMA journal of applied mathematics 2009-12, Vol.74 (6), p.807-826
Main Authors: Shearer, Michael, Gremaud, Pierre, Kleiner, Kristoph
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 826
container_issue 6
container_start_page 807
container_title IMA journal of applied mathematics
container_volume 74
creator Shearer, Michael
Gremaud, Pierre
Kleiner, Kristoph
description The equations of planar motion of a mass attached to two anchored massless springs form a symmetric Hamiltonian system. The system has a single dimensionless parameter L, corresponding to the spacing between the anchors. For L > 1, there is a stable equilibrium at which the springs are in tension and lie on a line, but for L 
doi_str_mv 10.1093/imamat/hxp032
format article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imamat_hxp032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/imamat/hxp032</oup_id><sourcerecordid>10.1093/imamat/hxp032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-2238f430401942cc20cf7b7b74c54b5fba75e9eb789982b9cc878b43b16f494c3</originalsourceid><addsrcrecordid>eNqFj71OwzAUhS0EEqEwsmdBgiH0-i-OR9RCi6iAASTEYtkmBkPzIztI7cY78IY8CUGpuqI73OU7R-dD6BjDOQZJx77Sle7Gb6sWKNlBCWY5y2hO2S5KgAiSMZnDPjqI8R0AMBeQoLP7Mvjmxdu0ajrf1GnjUp1WOsafr-_YBl-_pnEdu7I6RHtOL2N5tPkj9Hh1-TCZZ4u72fXkYpFZIlmXEUILxygwwJIRawlYJ0x_zHJmuDNa8FKWRhRSFsRIawtRGEYNzh2TzNIRyoZeG5oYQ-lUv6LSYa0wqD9PNXiqwbPnTwa-1dHqpQu6tj5uQ4QQoDznPXc6cM1n-2_lZoLvxVdbWIcPlQsquJo_PasZnS9uprdYTekvWolyAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Periodic motion of a mass–spring system</title><source>Oxford Journals Online</source><creator>Shearer, Michael ; Gremaud, Pierre ; Kleiner, Kristoph</creator><creatorcontrib>Shearer, Michael ; Gremaud, Pierre ; Kleiner, Kristoph</creatorcontrib><description>The equations of planar motion of a mass attached to two anchored massless springs form a symmetric Hamiltonian system. The system has a single dimensionless parameter L, corresponding to the spacing between the anchors. For L &gt; 1, there is a stable equilibrium at which the springs are in tension and lie on a line, but for L &lt; 1, this equilibrium has both springs in compression and is unstable. However, there are then two stable equilibria at which both springs carry no force. Oscillations are studied in both regimes, but more systematically in the tension case, where techniques of bifurcation theory, numerical approximation and numerical simulation are used to explore the rich variety of periodic solutions.</description><identifier>ISSN: 0272-4960</identifier><identifier>EISSN: 1464-3634</identifier><identifier>DOI: 10.1093/imamat/hxp032</identifier><identifier>CODEN: IJAMDM</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Exact sciences and technology ; Global analysis, analysis on manifolds ; Hamiltonian system ; mass-spring system ; Mathematical analysis ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical approximation ; Operator theory ; periodic solutions ; Sciences and techniques of general use ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>IMA journal of applied mathematics, 2009-12, Vol.74 (6), p.807-826</ispartof><rights>The Author 2009. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2009</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22203565$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shearer, Michael</creatorcontrib><creatorcontrib>Gremaud, Pierre</creatorcontrib><creatorcontrib>Kleiner, Kristoph</creatorcontrib><title>Periodic motion of a mass–spring system</title><title>IMA journal of applied mathematics</title><description>The equations of planar motion of a mass attached to two anchored massless springs form a symmetric Hamiltonian system. The system has a single dimensionless parameter L, corresponding to the spacing between the anchors. For L &gt; 1, there is a stable equilibrium at which the springs are in tension and lie on a line, but for L &lt; 1, this equilibrium has both springs in compression and is unstable. However, there are then two stable equilibria at which both springs carry no force. Oscillations are studied in both regimes, but more systematically in the tension case, where techniques of bifurcation theory, numerical approximation and numerical simulation are used to explore the rich variety of periodic solutions.</description><subject>Exact sciences and technology</subject><subject>Global analysis, analysis on manifolds</subject><subject>Hamiltonian system</subject><subject>mass-spring system</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical approximation</subject><subject>Operator theory</subject><subject>periodic solutions</subject><subject>Sciences and techniques of general use</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0272-4960</issn><issn>1464-3634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFj71OwzAUhS0EEqEwsmdBgiH0-i-OR9RCi6iAASTEYtkmBkPzIztI7cY78IY8CUGpuqI73OU7R-dD6BjDOQZJx77Sle7Gb6sWKNlBCWY5y2hO2S5KgAiSMZnDPjqI8R0AMBeQoLP7Mvjmxdu0ajrf1GnjUp1WOsafr-_YBl-_pnEdu7I6RHtOL2N5tPkj9Hh1-TCZZ4u72fXkYpFZIlmXEUILxygwwJIRawlYJ0x_zHJmuDNa8FKWRhRSFsRIawtRGEYNzh2TzNIRyoZeG5oYQ-lUv6LSYa0wqD9PNXiqwbPnTwa-1dHqpQu6tj5uQ4QQoDznPXc6cM1n-2_lZoLvxVdbWIcPlQsquJo_PasZnS9uprdYTekvWolyAg</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Shearer, Michael</creator><creator>Gremaud, Pierre</creator><creator>Kleiner, Kristoph</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20091201</creationdate><title>Periodic motion of a mass–spring system</title><author>Shearer, Michael ; Gremaud, Pierre ; Kleiner, Kristoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-2238f430401942cc20cf7b7b74c54b5fba75e9eb789982b9cc878b43b16f494c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Exact sciences and technology</topic><topic>Global analysis, analysis on manifolds</topic><topic>Hamiltonian system</topic><topic>mass-spring system</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical approximation</topic><topic>Operator theory</topic><topic>periodic solutions</topic><topic>Sciences and techniques of general use</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shearer, Michael</creatorcontrib><creatorcontrib>Gremaud, Pierre</creatorcontrib><creatorcontrib>Kleiner, Kristoph</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IMA journal of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shearer, Michael</au><au>Gremaud, Pierre</au><au>Kleiner, Kristoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periodic motion of a mass–spring system</atitle><jtitle>IMA journal of applied mathematics</jtitle><date>2009-12-01</date><risdate>2009</risdate><volume>74</volume><issue>6</issue><spage>807</spage><epage>826</epage><pages>807-826</pages><issn>0272-4960</issn><eissn>1464-3634</eissn><coden>IJAMDM</coden><abstract>The equations of planar motion of a mass attached to two anchored massless springs form a symmetric Hamiltonian system. The system has a single dimensionless parameter L, corresponding to the spacing between the anchors. For L &gt; 1, there is a stable equilibrium at which the springs are in tension and lie on a line, but for L &lt; 1, this equilibrium has both springs in compression and is unstable. However, there are then two stable equilibria at which both springs carry no force. Oscillations are studied in both regimes, but more systematically in the tension case, where techniques of bifurcation theory, numerical approximation and numerical simulation are used to explore the rich variety of periodic solutions.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/imamat/hxp032</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0272-4960
ispartof IMA journal of applied mathematics, 2009-12, Vol.74 (6), p.807-826
issn 0272-4960
1464-3634
language eng
recordid cdi_crossref_primary_10_1093_imamat_hxp032
source Oxford Journals Online
subjects Exact sciences and technology
Global analysis, analysis on manifolds
Hamiltonian system
mass-spring system
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Numerical approximation
Operator theory
periodic solutions
Sciences and techniques of general use
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
title Periodic motion of a mass–spring system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A14%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periodic%20motion%20of%20a%20mass%E2%80%93spring%20system&rft.jtitle=IMA%20journal%20of%20applied%20mathematics&rft.au=Shearer,%20Michael&rft.date=2009-12-01&rft.volume=74&rft.issue=6&rft.spage=807&rft.epage=826&rft.pages=807-826&rft.issn=0272-4960&rft.eissn=1464-3634&rft.coden=IJAMDM&rft_id=info:doi/10.1093/imamat/hxp032&rft_dat=%3Coup_cross%3E10.1093/imamat/hxp032%3C/oup_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-2238f430401942cc20cf7b7b74c54b5fba75e9eb789982b9cc878b43b16f494c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/imamat/hxp032&rfr_iscdi=true