Loading…
Periodic motion of a mass–spring system
The equations of planar motion of a mass attached to two anchored massless springs form a symmetric Hamiltonian system. The system has a single dimensionless parameter L, corresponding to the spacing between the anchors. For L > 1, there is a stable equilibrium at which the springs are in tension...
Saved in:
Published in: | IMA journal of applied mathematics 2009-12, Vol.74 (6), p.807-826 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 826 |
container_issue | 6 |
container_start_page | 807 |
container_title | IMA journal of applied mathematics |
container_volume | 74 |
creator | Shearer, Michael Gremaud, Pierre Kleiner, Kristoph |
description | The equations of planar motion of a mass attached to two anchored massless springs form a symmetric Hamiltonian system. The system has a single dimensionless parameter L, corresponding to the spacing between the anchors. For L > 1, there is a stable equilibrium at which the springs are in tension and lie on a line, but for L |
doi_str_mv | 10.1093/imamat/hxp032 |
format | article |
fullrecord | <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imamat_hxp032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/imamat/hxp032</oup_id><sourcerecordid>10.1093/imamat/hxp032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-2238f430401942cc20cf7b7b74c54b5fba75e9eb789982b9cc878b43b16f494c3</originalsourceid><addsrcrecordid>eNqFj71OwzAUhS0EEqEwsmdBgiH0-i-OR9RCi6iAASTEYtkmBkPzIztI7cY78IY8CUGpuqI73OU7R-dD6BjDOQZJx77Sle7Gb6sWKNlBCWY5y2hO2S5KgAiSMZnDPjqI8R0AMBeQoLP7Mvjmxdu0ajrf1GnjUp1WOsafr-_YBl-_pnEdu7I6RHtOL2N5tPkj9Hh1-TCZZ4u72fXkYpFZIlmXEUILxygwwJIRawlYJ0x_zHJmuDNa8FKWRhRSFsRIawtRGEYNzh2TzNIRyoZeG5oYQ-lUv6LSYa0wqD9PNXiqwbPnTwa-1dHqpQu6tj5uQ4QQoDznPXc6cM1n-2_lZoLvxVdbWIcPlQsquJo_PasZnS9uprdYTekvWolyAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Periodic motion of a mass–spring system</title><source>Oxford Journals Online</source><creator>Shearer, Michael ; Gremaud, Pierre ; Kleiner, Kristoph</creator><creatorcontrib>Shearer, Michael ; Gremaud, Pierre ; Kleiner, Kristoph</creatorcontrib><description>The equations of planar motion of a mass attached to two anchored massless springs form a symmetric Hamiltonian system. The system has a single dimensionless parameter L, corresponding to the spacing between the anchors. For L > 1, there is a stable equilibrium at which the springs are in tension and lie on a line, but for L < 1, this equilibrium has both springs in compression and is unstable. However, there are then two stable equilibria at which both springs carry no force. Oscillations are studied in both regimes, but more systematically in the tension case, where techniques of bifurcation theory, numerical approximation and numerical simulation are used to explore the rich variety of periodic solutions.</description><identifier>ISSN: 0272-4960</identifier><identifier>EISSN: 1464-3634</identifier><identifier>DOI: 10.1093/imamat/hxp032</identifier><identifier>CODEN: IJAMDM</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Exact sciences and technology ; Global analysis, analysis on manifolds ; Hamiltonian system ; mass-spring system ; Mathematical analysis ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical approximation ; Operator theory ; periodic solutions ; Sciences and techniques of general use ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>IMA journal of applied mathematics, 2009-12, Vol.74 (6), p.807-826</ispartof><rights>The Author 2009. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2009</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22203565$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shearer, Michael</creatorcontrib><creatorcontrib>Gremaud, Pierre</creatorcontrib><creatorcontrib>Kleiner, Kristoph</creatorcontrib><title>Periodic motion of a mass–spring system</title><title>IMA journal of applied mathematics</title><description>The equations of planar motion of a mass attached to two anchored massless springs form a symmetric Hamiltonian system. The system has a single dimensionless parameter L, corresponding to the spacing between the anchors. For L > 1, there is a stable equilibrium at which the springs are in tension and lie on a line, but for L < 1, this equilibrium has both springs in compression and is unstable. However, there are then two stable equilibria at which both springs carry no force. Oscillations are studied in both regimes, but more systematically in the tension case, where techniques of bifurcation theory, numerical approximation and numerical simulation are used to explore the rich variety of periodic solutions.</description><subject>Exact sciences and technology</subject><subject>Global analysis, analysis on manifolds</subject><subject>Hamiltonian system</subject><subject>mass-spring system</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical approximation</subject><subject>Operator theory</subject><subject>periodic solutions</subject><subject>Sciences and techniques of general use</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0272-4960</issn><issn>1464-3634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFj71OwzAUhS0EEqEwsmdBgiH0-i-OR9RCi6iAASTEYtkmBkPzIztI7cY78IY8CUGpuqI73OU7R-dD6BjDOQZJx77Sle7Gb6sWKNlBCWY5y2hO2S5KgAiSMZnDPjqI8R0AMBeQoLP7Mvjmxdu0ajrf1GnjUp1WOsafr-_YBl-_pnEdu7I6RHtOL2N5tPkj9Hh1-TCZZ4u72fXkYpFZIlmXEUILxygwwJIRawlYJ0x_zHJmuDNa8FKWRhRSFsRIawtRGEYNzh2TzNIRyoZeG5oYQ-lUv6LSYa0wqD9PNXiqwbPnTwa-1dHqpQu6tj5uQ4QQoDznPXc6cM1n-2_lZoLvxVdbWIcPlQsquJo_PasZnS9uprdYTekvWolyAg</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Shearer, Michael</creator><creator>Gremaud, Pierre</creator><creator>Kleiner, Kristoph</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20091201</creationdate><title>Periodic motion of a mass–spring system</title><author>Shearer, Michael ; Gremaud, Pierre ; Kleiner, Kristoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-2238f430401942cc20cf7b7b74c54b5fba75e9eb789982b9cc878b43b16f494c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Exact sciences and technology</topic><topic>Global analysis, analysis on manifolds</topic><topic>Hamiltonian system</topic><topic>mass-spring system</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical approximation</topic><topic>Operator theory</topic><topic>periodic solutions</topic><topic>Sciences and techniques of general use</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shearer, Michael</creatorcontrib><creatorcontrib>Gremaud, Pierre</creatorcontrib><creatorcontrib>Kleiner, Kristoph</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IMA journal of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shearer, Michael</au><au>Gremaud, Pierre</au><au>Kleiner, Kristoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periodic motion of a mass–spring system</atitle><jtitle>IMA journal of applied mathematics</jtitle><date>2009-12-01</date><risdate>2009</risdate><volume>74</volume><issue>6</issue><spage>807</spage><epage>826</epage><pages>807-826</pages><issn>0272-4960</issn><eissn>1464-3634</eissn><coden>IJAMDM</coden><abstract>The equations of planar motion of a mass attached to two anchored massless springs form a symmetric Hamiltonian system. The system has a single dimensionless parameter L, corresponding to the spacing between the anchors. For L > 1, there is a stable equilibrium at which the springs are in tension and lie on a line, but for L < 1, this equilibrium has both springs in compression and is unstable. However, there are then two stable equilibria at which both springs carry no force. Oscillations are studied in both regimes, but more systematically in the tension case, where techniques of bifurcation theory, numerical approximation and numerical simulation are used to explore the rich variety of periodic solutions.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/imamat/hxp032</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-4960 |
ispartof | IMA journal of applied mathematics, 2009-12, Vol.74 (6), p.807-826 |
issn | 0272-4960 1464-3634 |
language | eng |
recordid | cdi_crossref_primary_10_1093_imamat_hxp032 |
source | Oxford Journals Online |
subjects | Exact sciences and technology Global analysis, analysis on manifolds Hamiltonian system mass-spring system Mathematical analysis Mathematics Numerical analysis Numerical analysis. Scientific computation Numerical approximation Operator theory periodic solutions Sciences and techniques of general use Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds |
title | Periodic motion of a mass–spring system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A14%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periodic%20motion%20of%20a%20mass%E2%80%93spring%20system&rft.jtitle=IMA%20journal%20of%20applied%20mathematics&rft.au=Shearer,%20Michael&rft.date=2009-12-01&rft.volume=74&rft.issue=6&rft.spage=807&rft.epage=826&rft.pages=807-826&rft.issn=0272-4960&rft.eissn=1464-3634&rft.coden=IJAMDM&rft_id=info:doi/10.1093/imamat/hxp032&rft_dat=%3Coup_cross%3E10.1093/imamat/hxp032%3C/oup_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-2238f430401942cc20cf7b7b74c54b5fba75e9eb789982b9cc878b43b16f494c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/imamat/hxp032&rfr_iscdi=true |