Loading…

Optimally convergent mixed finite element methods for the stochastic Stokes equations

We propose some new mixed finite element methods for the time-dependent stochastic Stokes equations with multiplicative noise, which use the Helmholtz decomposition of the driving multiplicative noise. It is known (Langa, J. A., Real, J. & Simon, J. (2003) Existence and regularity of the pressur...

Full description

Saved in:
Bibliographic Details
Published in:IMA journal of numerical analysis 2021-07, Vol.41 (3), p.2280-2310
Main Authors: Feng, Xiaobing, Prohl, Andreas, Vo, Liet
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c279t-4f29d09b08d08cc8c60d4ca99eb28835bc84842f0889d7df6206bdccd78373713
cites cdi_FETCH-LOGICAL-c279t-4f29d09b08d08cc8c60d4ca99eb28835bc84842f0889d7df6206bdccd78373713
container_end_page 2310
container_issue 3
container_start_page 2280
container_title IMA journal of numerical analysis
container_volume 41
creator Feng, Xiaobing
Prohl, Andreas
Vo, Liet
description We propose some new mixed finite element methods for the time-dependent stochastic Stokes equations with multiplicative noise, which use the Helmholtz decomposition of the driving multiplicative noise. It is known (Langa, J. A., Real, J. & Simon, J. (2003) Existence and regularity of the pressure for the stochastic Navier--Stokes equations. Appl. Math. Optim., 48, 195--210) that the pressure solution has low regularity, which manifests in suboptimal convergence rates for well-known inf-sup stable mixed finite element methods in numerical simulations; see Feng X., & Qiu, H. (Analysis of fully discrete mixed finite element methods for time-dependent stochastic Stokes equations with multiplicative noise. arXiv:1905.03289v2 [math.NA]). We show that eliminating this gradient part from the noise in the numerical scheme leads to optimally convergent mixed finite element methods and that this conceptual idea may be used to retool numerical methods that are well known in the deterministic setting, including pressure stabilization methods, so that their optimal convergence properties can still be maintained in the stochastic setting. Computational experiments are also provided to validate the theoretical results and to illustrate the conceptual usefulness of the proposed numerical approach.
doi_str_mv 10.1093/imanum/drab006
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imanum_drab006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_imanum_drab006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-4f29d09b08d08cc8c60d4ca99eb28835bc84842f0889d7df6206bdccd78373713</originalsourceid><addsrcrecordid>eNotkMtOwzAURC0EEqGwZe0fSHtjGz-WqOIlVeoCuo4S-5oEkrjYLqJ_T6FdjTTSHGkOIbcVzCswfNGPzbQbFy42LYA8I0UlpCi5FOycFMAUK4VR5pJcpfQBAEIqKMhmvc2H4TDsqQ3TN8Z3nDId-x901PdTn5HigON_ibkLLlEfIs0d0pSD7ZqUe0tfc_jERPFr1-Q-TOmaXPhmSHhzyhnZPD68LZ_L1frpZXm_Ki1TJpfCM-PAtKAdaGu1leCEbYzBlmnN71qrhRbMg9bGKeclA9k6a53SXHFV8RmZH7k2hpQi-nobD2_ivq6g_pNSH6XUJyn8F7b9Weo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimally convergent mixed finite element methods for the stochastic Stokes equations</title><source>Oxford Journals Online</source><creator>Feng, Xiaobing ; Prohl, Andreas ; Vo, Liet</creator><creatorcontrib>Feng, Xiaobing ; Prohl, Andreas ; Vo, Liet</creatorcontrib><description>We propose some new mixed finite element methods for the time-dependent stochastic Stokes equations with multiplicative noise, which use the Helmholtz decomposition of the driving multiplicative noise. It is known (Langa, J. A., Real, J. &amp; Simon, J. (2003) Existence and regularity of the pressure for the stochastic Navier--Stokes equations. Appl. Math. Optim., 48, 195--210) that the pressure solution has low regularity, which manifests in suboptimal convergence rates for well-known inf-sup stable mixed finite element methods in numerical simulations; see Feng X., &amp; Qiu, H. (Analysis of fully discrete mixed finite element methods for time-dependent stochastic Stokes equations with multiplicative noise. arXiv:1905.03289v2 [math.NA]). We show that eliminating this gradient part from the noise in the numerical scheme leads to optimally convergent mixed finite element methods and that this conceptual idea may be used to retool numerical methods that are well known in the deterministic setting, including pressure stabilization methods, so that their optimal convergence properties can still be maintained in the stochastic setting. Computational experiments are also provided to validate the theoretical results and to illustrate the conceptual usefulness of the proposed numerical approach.</description><identifier>ISSN: 0272-4979</identifier><identifier>EISSN: 1464-3642</identifier><identifier>DOI: 10.1093/imanum/drab006</identifier><language>eng</language><ispartof>IMA journal of numerical analysis, 2021-07, Vol.41 (3), p.2280-2310</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-4f29d09b08d08cc8c60d4ca99eb28835bc84842f0889d7df6206bdccd78373713</citedby><cites>FETCH-LOGICAL-c279t-4f29d09b08d08cc8c60d4ca99eb28835bc84842f0889d7df6206bdccd78373713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Feng, Xiaobing</creatorcontrib><creatorcontrib>Prohl, Andreas</creatorcontrib><creatorcontrib>Vo, Liet</creatorcontrib><title>Optimally convergent mixed finite element methods for the stochastic Stokes equations</title><title>IMA journal of numerical analysis</title><description>We propose some new mixed finite element methods for the time-dependent stochastic Stokes equations with multiplicative noise, which use the Helmholtz decomposition of the driving multiplicative noise. It is known (Langa, J. A., Real, J. &amp; Simon, J. (2003) Existence and regularity of the pressure for the stochastic Navier--Stokes equations. Appl. Math. Optim., 48, 195--210) that the pressure solution has low regularity, which manifests in suboptimal convergence rates for well-known inf-sup stable mixed finite element methods in numerical simulations; see Feng X., &amp; Qiu, H. (Analysis of fully discrete mixed finite element methods for time-dependent stochastic Stokes equations with multiplicative noise. arXiv:1905.03289v2 [math.NA]). We show that eliminating this gradient part from the noise in the numerical scheme leads to optimally convergent mixed finite element methods and that this conceptual idea may be used to retool numerical methods that are well known in the deterministic setting, including pressure stabilization methods, so that their optimal convergence properties can still be maintained in the stochastic setting. Computational experiments are also provided to validate the theoretical results and to illustrate the conceptual usefulness of the proposed numerical approach.</description><issn>0272-4979</issn><issn>1464-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkMtOwzAURC0EEqGwZe0fSHtjGz-WqOIlVeoCuo4S-5oEkrjYLqJ_T6FdjTTSHGkOIbcVzCswfNGPzbQbFy42LYA8I0UlpCi5FOycFMAUK4VR5pJcpfQBAEIqKMhmvc2H4TDsqQ3TN8Z3nDId-x901PdTn5HigON_ibkLLlEfIs0d0pSD7ZqUe0tfc_jERPFr1-Q-TOmaXPhmSHhzyhnZPD68LZ_L1frpZXm_Ki1TJpfCM-PAtKAdaGu1leCEbYzBlmnN71qrhRbMg9bGKeclA9k6a53SXHFV8RmZH7k2hpQi-nobD2_ivq6g_pNSH6XUJyn8F7b9Weo</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Feng, Xiaobing</creator><creator>Prohl, Andreas</creator><creator>Vo, Liet</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210701</creationdate><title>Optimally convergent mixed finite element methods for the stochastic Stokes equations</title><author>Feng, Xiaobing ; Prohl, Andreas ; Vo, Liet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-4f29d09b08d08cc8c60d4ca99eb28835bc84842f0889d7df6206bdccd78373713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Xiaobing</creatorcontrib><creatorcontrib>Prohl, Andreas</creatorcontrib><creatorcontrib>Vo, Liet</creatorcontrib><collection>CrossRef</collection><jtitle>IMA journal of numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Xiaobing</au><au>Prohl, Andreas</au><au>Vo, Liet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimally convergent mixed finite element methods for the stochastic Stokes equations</atitle><jtitle>IMA journal of numerical analysis</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>41</volume><issue>3</issue><spage>2280</spage><epage>2310</epage><pages>2280-2310</pages><issn>0272-4979</issn><eissn>1464-3642</eissn><abstract>We propose some new mixed finite element methods for the time-dependent stochastic Stokes equations with multiplicative noise, which use the Helmholtz decomposition of the driving multiplicative noise. It is known (Langa, J. A., Real, J. &amp; Simon, J. (2003) Existence and regularity of the pressure for the stochastic Navier--Stokes equations. Appl. Math. Optim., 48, 195--210) that the pressure solution has low regularity, which manifests in suboptimal convergence rates for well-known inf-sup stable mixed finite element methods in numerical simulations; see Feng X., &amp; Qiu, H. (Analysis of fully discrete mixed finite element methods for time-dependent stochastic Stokes equations with multiplicative noise. arXiv:1905.03289v2 [math.NA]). We show that eliminating this gradient part from the noise in the numerical scheme leads to optimally convergent mixed finite element methods and that this conceptual idea may be used to retool numerical methods that are well known in the deterministic setting, including pressure stabilization methods, so that their optimal convergence properties can still be maintained in the stochastic setting. Computational experiments are also provided to validate the theoretical results and to illustrate the conceptual usefulness of the proposed numerical approach.</abstract><doi>10.1093/imanum/drab006</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0272-4979
ispartof IMA journal of numerical analysis, 2021-07, Vol.41 (3), p.2280-2310
issn 0272-4979
1464-3642
language eng
recordid cdi_crossref_primary_10_1093_imanum_drab006
source Oxford Journals Online
title Optimally convergent mixed finite element methods for the stochastic Stokes equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A02%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimally%20convergent%20mixed%20finite%20element%20methods%20for%20the%20stochastic%20Stokes%20equations&rft.jtitle=IMA%20journal%20of%20numerical%20analysis&rft.au=Feng,%20Xiaobing&rft.date=2021-07-01&rft.volume=41&rft.issue=3&rft.spage=2280&rft.epage=2310&rft.pages=2280-2310&rft.issn=0272-4979&rft.eissn=1464-3642&rft_id=info:doi/10.1093/imanum/drab006&rft_dat=%3Ccrossref%3E10_1093_imanum_drab006%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c279t-4f29d09b08d08cc8c60d4ca99eb28835bc84842f0889d7df6206bdccd78373713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true